Mar 6, 2020

Localisation of a random walk in dimensions $d \ge 3$

Budapest – Vienna Probability Seminar

Date: March 6, 2020 | 2:00 pm – 2:50 pm
Speaker: Nathanael Berestycki, University of Vienna
Location: Rényi Institute, Budapest

We study a self-attractive random walk such that each trajectory of length $N$ is penalized by a factor proportional to $\exp(−|R_N |)$, where $R_N$ is the set of sites visited by the walk. We show that the range of such a walk is close to a solid Euclidean ball of radius approximately $\rho_d N^{1/(d+2) }$, for some explicit constant $\rho_d >0$. This proves a conjecture of Bolthausen (1994) who obtained this result in the case d = 2. Joint work with Raphael Cerf (Paris).

More Information:

Date:
March 6, 2020
2:00 pm – 2:50 pm

Speaker:
Nathanael Berestycki, University of Vienna

Location:
Rényi Institute, Budapest

Contact:

Oosthuizen-Noczil Birgit

Email:
birgit.oosthuizen-noczil@ist.ac.at

Share



Back to Top