PHYSICAL SCIENCES

Modic Group

Thermodynamics of quantum materials at the microscale

Modern quantum materials, such as unconventional superconductors, quantum spin liquids, and topological semimetals, host a wide variety of emergent states of matter. A grand experimental challenge is to determine the broken symmetries and topological structure of these states. The Modic group combines custom-built thermodynamic probes with state-of-the-art sample preparation to answer these questions.


The group uses advanced focused-ion beam (FIB) micro-structuring to design unique experiments and broaden the search space for discovery. For example, topological materials are expected to produce the next generation of electronics, but their surface-state properties are usually inaccessible to bulk measurements, such as resistivity or magnetization. Using the FIB, they can increase the surface-to-volume ratio of the sample and detect surface states directly. Modic and her team primarily develop two powerful thermodynamic and symmetry-sensitive techniques for use at the microscale: resonant torsion magnetometry and pulsed-echo ultrasound. At IST Austria, they also have the in-house capability to perform electrical transport, heat capacity and magnetization at low temperatures (300 mK) and at moderate magnetic fields (14 tesla). Magnetic fields are a versatile tuning parameter that can be used to drive materials into new states of matter, to map Fermi surface geometries, and to measure the strength of magnetic interactions. The group has expertise in designing experiments that work in pulsed magnetic fields up to 100 tesla, and the scientists regularly travel to high-field facilities around the world.

Group Leader


On this site:


Current Projects


Publications

Shirer KR, Modic KA, Zimmerling T, Bachmann MD, König M, Moll PJW, Schoop L, Mackenzie AP. 2019. Out-of-plane transport in ZrSiS and ZrSiSe microstructures. APL Materials. 7(10), 101116. View

Bachmann MD, Ferguson GM, Theuss F, Meng T, Putzke C, Helm T, Shirer KR, Li Y-S, Modic KA, Nicklas M, König M, Low D, Ghosh S, Mackenzie AP, Arnold F, Hassinger E, McDonald RD, Winter LE, Bauer ED, Ronning F, Ramshaw BJ, Nowack KC, Moll PJW. 2019. Spatial control of heavy-fermion superconductivity in CeIrIn5. Science. 366(6462), 221–226. View

Martino E, Bachmann MD, Rossi L, Modic KA, Zivkovic I, Rønnow HM, Moll PJW, Akrap A, Forró L, Katrych S. 2019. Persistent antiferromagnetic order in heavily overdoped Ca1−x La x FeAs2. Journal of Physics: Condensed Matter. 31(48), 485705. View

Modic KA, Meng T, Ronning F, Bauer ED, Moll PJW, Ramshaw BJ. 2019. Thermodynamic signatures of Weyl fermions in NbP. Scientific Reports. 9(1), 2095. View

Modic KA, Ramshaw BJ, Shekhter A, Varma CM. 2018. Chiral spin order in some purported Kitaev spin-liquid compounds. Physical Review B. 98(20), 205110. View

View All Publications

Career

From 2020 Assistant Professor, IST Austria
2016-2019 Postdoctoral Researcher, Microstructured Quantum Matter & Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
2012-2016 Graduate Research Assistant, National High Magnetic Field Laboratory – Pulsed Field Facility, Los Alamos NM, USA
2015 PhD, University of Texas, Austin TX, USA
2009 BSc, Clemson University, Clemson SC, USA


Additional Information

Download CV



Back to Top