Cohomotopy groups capture robust Properties of Zero Sets via Homotopy Theory

Peter Franek1, Marek Krčál2

1Academy of Sciences of the Czech Republic
2IST Austria

ACAT meeting 2015
Maps to \mathbb{R}^n

- Maps $f : X \to \mathbb{R}^n$ appear in science and engineering.
Maps to \mathbb{R}^n

- Maps $f : X \to \mathbb{R}^n$ appear in science and engineering
 - Used to define (nonlinear) optimization problems
Maps to \mathbb{R}^n

- Maps $f : X \rightarrow \mathbb{R}^n$ appear in science and engineering
 - Used to define (nonlinear) optimization problems
 - Model dynamic systems (game theory)
Maps to \mathbb{R}^n

- Maps $f: X \to \mathbb{R}^n$ appear in science and engineering
 - Used to define (nonlinear) optimization problems
 - Model dynamic systems (game theory)
 - Physical quantities (MRI, ultrasound scans)
Maps to \mathbb{R}^n

- Maps $f : X \rightarrow \mathbb{R}^n$ appear in science and engineering
 - Used to define (nonlinear) optimization problems
 - Model dynamic systems (game theory)
 - Physical quantities (MRI, ultrasound scans)
- In many cases, the preimage of zero (or any single point in \mathbb{R}^n) plays a crucial role.
Maps to \mathbb{R}^n

- Maps $f : X \to \mathbb{R}^n$ appear in science and engineering
 - Used to define (nonlinear) optimization problems
 - Model dynamic systems (game theory)
 - Physical quantities (MRI, ultrasound scans)

- In many cases, the preimage of zero (or any single point in \mathbb{R}^n) plays a crucial role.

- Often we have access only to an approximation of the actual map.
Robust features of zero sets

Given $f : X \rightarrow \mathbb{R}^n$, compute features of the zero set $f^{-1}(0)$ that are “stable” with respect to perturbations of f.
Robust features of zero sets

Given $f : X \to \mathbb{R}^n$, compute features of the zero set $f^{-1}(0)$ that are “stable” with respect to perturbations of f.

• Interesting cases: $\dim X \geq n$
Robust features of zero sets

Given \(f : X \rightarrow \mathbb{R}^n \), compute features of the zero set \(f^{-1}(0) \) that are “stable” with respect to perturbations of \(f \).

- Interesting cases: \(\dim X \geq n \)
- Stability/robustness is measured by a parameter \(r \in (0, \infty) \) yielding persistence of features
Given $f : X \to \mathbb{R}^n$, compute properties of the zero set $f^{-1}(0)$ that are “stable” with respect to perturbations of f.

$$ f(x, y) = y $$

R

0
Robust features of zero sets

Given $f : X \rightarrow \mathbb{R}^n$, compute properties of the zero set $f^{-1}(0)$ that are “stable” with respect to perturbations of f.

$$\|g - f\| < r_1$$
Robust features of zero sets

Given \(f : X \to \mathbb{R}^n \), compute properties of the zero set \(f^{-1}(0) \) that are “stable” wrt perturbations of \(f \).
Robust features of zero sets

Given \(f : X \to \mathbb{R}^n \), compute properties of the zero set \(f^{-1}(0) \) that are “stable” wrt perturbations of \(f \).
Formalization

For $f : X \rightarrow \mathbb{R}^n$ and $r > 0$, let

$$Z_r(f) := \{g^{-1}(0) : g : X \rightarrow \mathbb{R}^n \text{ s.t. } \|g - f\| < r\}$$

Some robust features of zero sets (properties of $Z_r(f)$) to study:

- The fundamental geometric property of $Z_r(f)$: set of potential zeros
 $\bigcup Z_r(f) = \{x : |f(x)| < r\}$
Formalization

For $f : X \to \mathbb{R}^n$ and $r > 0$, let

$$Z_r(f) := \{ g^{-1}(0) : g : X \to \mathbb{R}^n \text{ s.t. } \| g - f \| < r \}$$

Some robust features of zero sets (properties of $Z_r(f)$) to study:

- The fundamental geometric property of $Z_r(f)$: set of potential zeros $\bigcup Z_r(f) = \{ x : |f(x)| < r \}$
- Robust non-emptyness: $\emptyset \notin Z_r(f)$
Formalization

For \(f : X \to \mathbb{R}^n \) and \(r > 0 \), let

\[
Z_r(f) := \{ g^{-1}(0) : g : X \to \mathbb{R}^n \text{ s.t. } \|g - f\| < r\}
\]

Some robust features of zero sets (properties of \(Z_r(f) \)) to study:

- The fundamental geometric property of \(Z_r(f) \):
 \[
 \text{set of potential zeros } \bigcup Z_r(f) = \{ x : |f(x)| < r \}
 \]
- Robust non-emptyness: \(\emptyset \notin Z_r(f) \)
- Robust optima: \(\inf_{Z \in Z_r(f)} \sup_{x \in Z} c(x) \) for some objective \(c : X \to \mathbb{R} \),
Formalization

For $f : X \to \mathbb{R}^n$ and $r > 0$, let

$$Z_r(f) := \{g^{-1}(0) : g : X \to \mathbb{R}^n \text{ s.t. } \|g - f\| < r\}$$

Some robust features of zero sets (properties of $Z_r(f)$) to study:

- The fundamental geometric property of $Z_r(f)$: set of potential zeros $\bigcup Z_r(f) = \{x : |f(x)| < r\}$
- Robust non-emptyness: $\emptyset \notin Z_r(f)$
- Robust optima: $\inf_{Z \in Z_r(f)} \sup_{x \in Z} c(x)$ for some objective $c : X \to \mathbb{R}$
- Robust volume: $\inf_{Z \in Z_r(f)} \mathcal{H}^{m-n}(Z)$ where $m = \dim X$
Descriptors of $Z_r(f)$

The surprising recipe is not to study f where it is small but rather where it is big (here the restriction of f defines a map to a sphere)
The surprising recipe is not to study f where it is small but rather where it is big (here the restriction of f defines a map to a sphere)

Theorem (A)

Let $f : X \to \mathbb{R}^n$ and X be compact. If $A_r := \{x : |f(x)| \geq r\}$ is given, then $Z_r(f)$ is determined by the homotopy class of $f/|f| : A_r \to S^{n-1}$.

$$\text{Descriptors of } Z_r(f)$$
From perturbations to homotopy perturbations

Key idea: perturbations (g with $\|g - f\| < r$) can be replaced by ”homotopy perturbations”:

\[
\text{Lemma } \left\{ g - 1(0) : \|g - f\| < r \right\} = \left\{ e - 1(0) : e|_{\mathcal{A}r} = f|_{\mathcal{A}r} \right\}
\]

Sketch of proof.

$\subseteq (g \Rightarrow e)$: $g|_{\mathcal{A}r} \sim f|_{\mathcal{A}r}$ via straight-line homotopy extends to a homotopy unaffecting the zero set its endpoint is the desired e

$\supseteq (e \Rightarrow g)$: multiply e by a scalar function that is 1 of $\mathcal{A}r$ and goes quickly to 0 elsewhere.
From perturbations to homotopy perturbations

Key idea: perturbations (\(g\) with \(\|g - f\| < r\)) can be replaced by "homotopy perturbations":

Lemma
\[
\{ g^{-1}(0) : \|g - f\| < r \} = \{ e^{-1}(0) : e|_{A_r} = f|_{A_r} \}
\]

Sketch of proof.

- \(\subseteq (g \Rightarrow e)\): \(g|_{A_r} \sim f|_{A_r}\) via straight-line homotopy extends to a homotopy unaffected by the zero set at its endpoint is the desired \(e\)

- \(\supseteq (e \Rightarrow g)\): multiply \(e\) by a scalar function that is 1 on \(A_r\) and goes quickly to 0 elsewhere.
From perturbations to homotopy perturbations

Key idea: perturbations \((g \text{ with } \|g - f\| < r)\) can be replaced by "homotopy perturbations":

Lemma
\[
\{g^{-1}(0): \|g - f\| < r\} = \{e^{-1}(0): e|_{A_r} = f|_{A_r}\}
\]

Sketch of proof.
From perturbations to homotopy perturbations

Key idea: perturbations \((g \text{ with } \|g - f\| < r)\) can be replaced by "homotopy perturbations":

Lemma
\[
\{g^{-1}(0): \|g - f\| < r\} = \{e^{-1}(0): e|_{A_r} = f|_{A_r}\}
\]

Sketch of proof.

- \(\subseteq (g \rightsquigarrow e)\):
 \(g|_{A_r} \sim f|_{A_r}\) via straight-line homotopy
 extends to a homotopy unaffected by the zero set
 its endpoint is the desired \(e\)
From perturbations to homotopy perturbations

Key idea: perturbations \((g \text{ with } \|g - f\| < r)\) can be replaced by "homotopy perturbations":

Lemma
\[
\{ g^{-1}(0) : \|g - f\| < r \} = \{ e^{-1}(0) : e|_{A_r} = f|_{A_r} \}
\]

Sketch of proof.

- \(\subseteq\ (g \leadsto e)\):
 \[g|_{A_r} \sim f|_{A_r}\] via straight-line homotopy extends to a homotopy unaffected the zero set its endpoint is the desired \(e\)

- \(\supseteq\ (e \leadsto g)\):
multiply \(e\) by a scalar function that is 1 of \(A_r\) and goes quickly to 0 elsewhere.
Robust nonemptiness

Immediate consequence:

\[\emptyset \notin Z_r(f) \iff f/|f|: A_r \to S^{n-1} \text{ can be extended to } X \to S^{n-1} \]

The extendability problem is in decidable when \(\dim X \leq 2n - 3 \) (or \(n = 1, 2 \) or \(n \) even) and is undecidable otherwise.
Theorem (A)

Let $f : X \to \mathbb{R}^n$ and X be compact. If $A_r := \{ x : |f(x)| \geq r \}$ is given, then $Z_r(f)$ is determined by the homotopy class of $f / |f| : A_r \to S^{n-1}$.
Descriptors of $Z_r(f)$ continued

Theorem (A)

Let $f : X \to \mathbb{R}^n$ and X be compact. If $A_r := \{x : |f(x)| \geq r\}$ is given, then $Z_r(f)$ is determined by the homotopy class of $f/|f| : A_r \to S^{n-1}$.

Moreover, if $A_r \subseteq X$ are CW complexes and $\dim X \leq 2n - 3$, then $Z_r(f)$ is determined by the δ-image of the above homotopy class, where δ is the “connecting homomorphism” in the sequence

\[\cdots \to [X, S^{n-1}] \xrightarrow{i^*} [A_r, S^{n-1}] \xrightarrow{\delta} [X/A_r, S^n] \xrightarrow{\cup} [f/|f|] \mapsto [f/A_r] \]
Descriptors of $Z_r(f)$

\[
\ldots \rightarrow [X, S^{n-1}] \xrightarrow{i^*} [A_r, S^{n-1}] \xrightarrow{\delta} [X / A_r, S^n] \cup [f / |f|] \mapsto [f / A_r]
\]
Descriptors of $Z_r(f)$

\[\ldots \rightarrow [X, S^{n-1}] \xrightarrow{i^*} [A_r, S^{n-1}] \xrightarrow{\delta} [X/A_r, S^n] \]

- The cohomotopy sets are Abelian groups if $\dim X \leq 2n - 4$
Descriptors of $Z_r(f)$

\[
\ldots \rightarrow [X, S^{n-1}] \xrightarrow{i^*} [A_r, S^{n-1}] \xrightarrow{\delta} [X/A_r, S^n] \cup [f/|f|] \mapsto [f/A_r]
\]

- The cohomotopy sets are Abelian groups if $\dim X \leq 2n - 4$
- If $\dim X \leq 2n - 4$, the sequence is exact (LES of cohomotopy groups)
 \[\Rightarrow\] Each $[f/A_r]$ uniquely corresponds to the coset $[f/|f|] + i^*[X, S^{n-1}]$ in $[A, S^{n-1}]$.
Descriptors of $Z_r(f)$

... $\rightarrow [X, S^{n-1}] \xrightarrow{i^*} [A_r, S^{n-1}] \xrightarrow{\delta} [X/A_r, S^n]$

$[f/|f|] \mapsto [f/A_r]$

- The **cohomotopy sets** are Abelian groups if $\dim X \leq 2n - 4$
- If $\dim X \leq 2n - 4$, the sequence is exact (LES of cohomotopy groups)
 \Rightarrow Each $[f/A_r]$ uniquely corresponds to the coset $[f/|f|] + i^*[X, S^{n-1}]$ in $[A, S^{n-1}]$.
- We denote $\text{Im} \delta$ by π_r (group of all descriptors)
Descriptors of $Z_r(f)$

\[\ldots \rightarrow [X, S^{n-1}] \xrightarrow{i^*} [A_r, S^{n-1}] \xrightarrow{\delta} [X/A_r, S^n] \xrightarrow{\cup} [f/|f|] \mapsto [f/A_r] \]

- The cohomotopy sets are Abelian groups if $\text{dim } X \leq 2n - 4$
- If $\text{dim } X \leq 2n - 4$, the sequence is exact (LES of cohomotopy groups)
 \[\Rightarrow \text{ Each } [f/A_r] \text{ uniquely corresponds to the coset } [f/|f|] + i^*[X, S^{n-1}] \text{ in } [A, S^{n-1}]. \]
- We denote $\text{Im } \delta$ by π_r (group of all descriptors)
- The theorem does not give recipes for how to decode particular robust features from the homotopy class... but it yields a persistence-like tool for distinguishing
When r grows...

$[f/A_r] \in \pi_r$ determines $[f/A_s] \in \pi_s$ for $r < s$ in a structured way, formally:
When r grows...

$[f_{/A_r}] \in \pi_r$ determines $[f_{/A_s}] \in \pi_s$ for $r < s$ in a structured way, formally:

- If $r < s$ then the inclusion $A_r \supseteq A_s$ induces $[A_r, S^{n-1}] \rightarrow [A_s, S^{n-1}]$
When r grows...

$[f/A_r] \in \pi_r$ determines $[f/A_s] \in \pi_s$ for $r < s$ in a structured way, formally:

- If $r < s$ then the inclusion $A_r \supseteq A_s$ induces $[A_r, S^{n-1}] \to [A_s, S^{n-1}]$
- Similarly, there is a map $\pi_r \to \pi_s$ that takes $[f/A_r]$ to $[f/A_s]$
Cohomotopy persistence module

Let X be compact, $\dim X \leq 2n - 3$. Then to each $f: X \to \mathbb{R}^n$ we assign a pointed persistence module Πf... Im $(\delta) = \pi_r \to \pi_s \to ... \in [f/A_r] \to [f/A_s]$.

Formally, it is a functor from \mathbb{R}^+ to the category of pointed Abelian groups (a morphism $(A, a) \to (B, b)$ maps a to b).

The assignment $f \mapsto \Pi f$ is stable wrt interleaving distance: $d(\Pi f, \Pi g) \leq \|f - g\|$. After tensoring with a field, Πf may be represented via a pointed barcode.
Cohomotopy persistence module

Let X be compact, $\dim X \leq 2n - 3$. Then to each $f : X \to \mathbb{R}^n$ we assign a pointed persistence module Π_f

$$\ldots \quad \text{Im}(\delta) = \pi_r \quad \rightarrow \quad \pi_s \quad \rightarrow \ldots$$

$$\uplus \quad \uplus$$

$$[f/A_r] \leftrightarrow [f/A_s]$$
Cohomotopy persistence module

Let X be compact, $\dim X \leq 2n - 3$. Then to each $f : X \rightarrow \mathbb{R}^n$ we assign a pointed persistence module Π_f

\[\ldots \quad \text{Im}(\delta) = \pi_r \quad \rightarrow \quad \pi_s \quad \rightarrow \ldots \]
\[\cup \quad \cup \]
\[[f/A_r] \quad \mapsto \quad [f/A_s] \]

Formally, it is a functor from \mathbb{R}^+ to the category of pointed Abelian groups (a morphism $(A, a) \rightarrow (B, b)$ maps a to b).
Cohomotopy persistence module

Let X be compact, $\dim X \leq 2n - 3$. Then to each $f : X \to \mathbb{R}^n$ we assign a pointed persistence module Π_f

$$\ldots \ \textrm{Im}(\delta) = \pi_r \to \pi_s \to \ldots \ \cup \ \cup
\quad [f/A_r] \mapsto [f/A_s]$$

Formally, it is a functor from \mathbb{R}^+ to the category of pointed Abelian groups (a morphism $(A, a) \to (B, b)$ maps a to b).

The assignment $f \mapsto \Pi_f$ is stable wrt interleaving distance: $d(\Pi_f, \Pi_g) \leq \|f - g\|$.
Let X be compact, $\dim X \leq 2n - 3$. Then to each $f : X \to \mathbb{R}^n$ we assign a pointed persistence module Π_f

\[
\ldots \quad \text{Im}(\delta) = \pi_r \to \pi_s \to \ldots
\]

\[
[f/A_r] \mapsto [f/A_s]
\]

Formally, it is a functor from \mathbb{R}^+ to the category of pointed Abelian groups (a morphism $(A, a) \to (B, b)$ maps a to b).

The assignment $f \mapsto \Pi_f$ is stable wrt interleaving distance: $d(\Pi_f, \Pi_g) \leq \|f - g\|$.
Cohomotopy persistence module

Let X be compact, $\dim X \leq 2n - 3$. Then to each $f : X \to \mathbb{R}^n$ we assign a pointed persistence module Π_f

$$
\ldots \quad \text{Im}(\delta) = \pi_r \quad \rightarrow \quad \pi_s \quad \rightarrow \quad \ldots

\cup \quad \cup

[f/A_r] \quad \mapsto \quad [f/A_s]
$$

Formally, it is a functor from \mathbb{R}^+ to the category of pointed Abelian groups (a morphism $(A, a) \to (B, b)$ maps a to b).

The assignment $f \mapsto \Pi_f$ is stable wrt interleaving distance:

$$
d(\Pi_f, \Pi_g) \leq \|f - g\|.
$$

After tensoring with a field, Π_f may be represented via a pointed barcode
Theorem (B) Let X be a finite simplicial complex, $f : X \to \mathbb{R}^n$ be simplexwise linear with rational values on vertices and assume $\dim X \leq 2n - 3$. Then the isomorphism type of Π_f as well as barcode of $\Pi_f \otimes F$ for $F = \mathbb{Q}$ or F finite can be computed. Main ingredients:

• Computability of cohomotopy groups $[Y, S^{n-1}]$ in the dimension range $\dim Y \leq 2n - 4$. [ˇCadek, K., Matouˇsek, Sergeraert, Vokˇr ´ ınek, Wagner, Computing All Maps into a Sphere]

• Approximation of A_r (up to homotopy equivalence) by simplicial subcomplex $A \Delta_r \subseteq X$.

• Simplicial approximation of $f/|f| : A \Delta_r \to (S^{n-1}) \Delta_r$.
Computability of Π_f

Theorem (B)

Let X be a finite simplicial complex, $f : X \to \mathbb{R}^n$ be simplexwise linear with rational values on vertices and assume $\dim X \leq 2n - 3$. Then the isomorphism type of Π_f as well as barcode of $\Pi_f \otimes F$ for $F = \mathbb{Q}$ or F finite can be computed.
Computability of Π_f

Theorem (B)

Let X be a finite simplicial complex, $f : X \to \mathbb{R}^n$ be simplexwise linear with rational values on vertices and assume $\dim X \leq 2n - 3$. Then the isomorphism type of Π_f as well as barcode of $\Pi_f \otimes F$ for $F = \mathbb{Q}$ or F finite can be computed.

Main ingredients:

- **Computability of cohomotopy groups** $[Y, S^{n-1}]$ in the dimension range $\dim Y \leq 2n - 4$.

 [Čadek, K., Matoušek, Sergeraert, Vokřínek, Wagner, *Computing All Maps into a Sphere*]
Theorem (B)

Let X be a finite simplicial complex, $f : X \rightarrow \mathbb{R}^n$ be simplexwise linear with rational values on vertices and assume $\dim X \leq 2n - 3$. Then the isomorphism type of Π_f as well as barcode of $\Pi_f \otimes \mathbb{F}$ for $\mathbb{F} = \mathbb{Q}$ or \mathbb{F} finite can be computed.

Main ingredients:

- Computability of cohomotopy groups $[Y, S^{n-1}]$ in the dimension range $\dim Y \leq 2n - 4$.
 [Čadek, K., Matoušek, Sergeraert, Vokřínek, Wagner, Computing All Maps into a Sphere]

- Approximation of A_r (up to homotopy equivalence) by simplicial subcomplex $A_r^\Delta \subseteq X$.
Computability of Π_f

Theorem (B)

Let X be a finite simplicial complex, $f : X \to \mathbb{R}^n$ be simplexwise linear with rational values on vertices and assume $\dim X \leq 2n - 3$. Then the isomorphism type of Π_f as well as barcode of $\Pi_f \otimes F$ for $F = \mathbb{Q}$ or F finite can be computed.

Main ingredients:

- **Computability of cohomotopy groups** $[Y, S^{n-1}]$ in the dimension range $\dim Y \leq 2n - 4$.
 [Čadek, K., Matoušek, Sergeraert, Vokřínek, Wagner, *Computing All Maps into a Sphere*]

- Approximation of A_r (up to homotopy equivalence) by simplicial subcomplex $A_r^{\Delta} \subseteq X$.

- Simplicial approximation of $f/|f| : A_r^{\Delta} \to (S^{n-1})^{\Delta}$.
Low dimensional cases

The condition \(\dim X \leq 2n - 3 \) is quite strict for small \(n \), but ...
Low dimensional cases

The condition $\text{dim } X \leq 2n - 3$ is quite strict for small n, but . . .

- If $n = 1$ (scalar functions) we may easily compute the homotopy class of $f/|f| : A_r \to S^0$ and $[A_r, S^0] \to [A_s, S^0]$ for $r < s$.

- If $n = 2$, then $f/|f| \in [A_r, S^1]$. This is always a group naturally isomorphic to $H_1(A_r, \mathbb{Z})$.

- If $n = 3$, then $\text{dim } X = 3$ already satisfies $\text{dim } X \leq 2n - 3$.

- However, if $\text{dim } X = 4$ and $n = 3$ then $\emptyset \in \mathbb{Z}^r f$ is undecidable!

- $n = 4$ is nice: $f/|f| \in [A_r, S^3]$ and $[Y, S^3]$ is a group for any Y due to quaternion multiplications – computability of $[Y, S^3]$ is work in progress.
Low dimensional cases

The condition \(\dim X \leq 2n - 3 \) is quite strict for small \(n \), but . . .

- If \(n = 1 \) (scalar functions) we may easily compute the homotopy class of \(f/|f| : A_r \to S^0 \) and \([A_r, S^0] \to [A_s, S^0]\) for \(r < s \).
- If \(n = 2 \), then \(f/|f| \in [A_r, S^1] \). This is always a group naturally isomorphic to \(H^1(A_r, \mathbb{Z}) \).
Low dimensional cases

The condition $\dim X \leq 2n - 3$ is quite strict for small n, but . . .

- If $n = 1$ (scalar functions) we may easily compute the homotopy class of $f/|f| : A_r \to S^0$ and $[A_r, S^0] \to [A_s, S^0]$ for $r < s$.
- If $n = 2$, then $f/|f| \in [A_r, S^1]$. This is always a group naturally isomorphic to $H^1(A_r, \mathbb{Z})$.
- $n = \dim X = 3$ already satisfies $\dim X \leq 2n - 3$.

However, if $\dim X = 4$ and $n = 3$ then $\emptyset \in \mathbb{Z}_r(f)$ is undecidable!

- $n = 4$ is nice: $f/|f| \in [A_r, S^3]$ and $[Y, S^3]$ is a group for any Y due to quaternion multiplications – computability of $[Y, S^3]$ is work in progress.
The condition $\dim X \leq 2n - 3$ is quite strict for small n, but . . .

- If $n = 1$ (scalar functions) we may easily compute the homotopy class of $f/|f| : A_r \to S^0$ and $[A_r, S^0] \to [A_s, S^0]$ for $r < s$.

- If $n = 2$, then $f/|f| \in [A_r, S^1]$. This is always a group naturally isomorphic to $H^1(A_r, \mathbb{Z})$.

- $n = \dim X = 3$ already satisfies $\dim X \leq 2n - 3$. However, if $\dim X = 4$ and $n = 3$ then $\emptyset \in Z_r(f)$ is undecidable!
Low dimensional cases

The condition \(\dim X \leq 2n - 3 \) is quite strict for small \(n \), but . . .

- If \(n = 1 \) (scalar functions) we may easily compute the homotopy class of \(f/|f| : A_r \to S^0 \) and \([A_r, S^0] \to [A_s, S^0] \) for \(r < s \).
- If \(n = 2 \), then \(f/|f| \in [A_r, S^1] \). This is always a group naturally isomorphic to \(H^1(A_r, \mathbb{Z}) \).
- \(n = \dim X = 3 \) already satisfies \(\dim X \leq 2n - 3 \). However, if \(\dim X = 4 \) and \(n = 3 \) then \(\emptyset \in Z_r(f) \) is undecidable!
- \(n = 4 \) is nice: \(f/|f| \in [A_r, S^3] \) and \([Y, S^3] \) is a group for any \(Y \) due to quaternion multiplications – computability of \([Y, S^3] \) is work in progress.
Related work on descriptors of $Z_r(f)$

- **Well groups**: capture homological properties common to all $Z \in Z_r(f)$ (informally)
Related work on descriptors of $Z_r(f)$

- **Well groups**: capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$

- Cap image groups: computable replacement of well groups
 - subgroups of well groups
 - based on primary obstruction to extending $f/|f|$: $A_r \to S^{n-1}$
 - the primary obstruction is the "first component" of f/A_r

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter.

Cap image groups can be used to study preimages of all points in \mathbb{R}^n simultaneously in some sense: provide an alternative to multidimensional persistence.
Related work on descriptors of $Z_r(f)$

- **Well groups**: capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$
 - undecidability for $\dim X = 2n - 2$

- **Cap image groups**: computable replacement of well groups
 - subgroups of well groups
 - based on primary obstruction to extending $f/\mid f/|A_r \to S_n - 1$
 - the primary obstruction is the "first component" of $[f/A_r]$

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter.

Cap image groups can be used to study preimages of all points in \mathbb{R}^n simultaneously in some sense: provide an alternative to multidimensional persistence.
Related work on descriptors of $Z_r(f)$

- **Well groups:** capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$
 - undecidability for $\dim X = 2n - 2$
 - do not determine $Z_r(f)$

- **Cap image groups:** computable replacement of well groups
 - subgroups of well groups
 - based on primary obstruction to extending $f/|f|: \mathbb{A}^r \to S^{n-1}$

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter.

Cap image groups can be used to study preimages of all points in \mathbb{R}^n simultaneously in some sense: provide an alternative to multidimensional persistence.
Related work on descriptors of $Z_r(f)$

- **Well groups**: capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$
 - undecidability for $\dim X = 2n - 2$
 - do not determine $Z_r(f)$

- **Cap image groups**: computable replacement of well groups
 - subgroups of well groups
 - based on primary obstruction to extending $f/|f|$: $A_r \to S^{n-1}$

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter. Cap image groups can be used to study preimages of all points in \mathbb{R}^n simultaneously in some sense: provide an alternative to multidimensional persistence.
Related work on descriptors of $Z_r(f)$

- **Well groups:** capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$
 - undecidability for $\dim X = 2n - 2$
 - do not determine $Z_r(f)$

- **Cap image groups:** computable replacement of well groups
 - subgroups of well groups

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter. Cap image groups can be used to study preimages of all points in \mathbb{R}^n simultaneously in some sense: provide an alternative to multidimensional persistence.
Related work on descriptors of $Z_r(f)$

- **Well groups**: capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$
 - undecidability for $\dim X = 2n - 2$
 - do not determine $Z_r(f)$

- **Cap image groups**: computable replacement of well groups
 - subgroups of well groups
 - based on primary obstruction to extending $f/|f|: A_r \to S^{n-1}$
 - the primary obstruction is the “first component” of $[f_{/A_r}]$

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter.

Cap image groups can be used to study preimages of all points in \mathbb{R}^n simultaneously in some sense: provide an alternative to multidimensional persistence.
Related work on descriptors of $Z_r(f)$

- **Well groups:** capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$
 - undecidability for $\dim X = 2n - 2$
 - do not determine $Z_r(f)$

- **Cap image groups:** computable replacement of well groups
 - subgroups of well groups
 - based on primary obstruction to extending $f/\|f\|: A_r \to S^{n-1}$
 - the primary obstruction is the “first component” of $[f/A_r]$.

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter.
Related work on descriptors of $Z_r(f)$

- **Well groups:** capture homological properties common to all $Z \in Z_r(f)$ (informally)
 - computability only in special cases: $n = 1$ or $n = \dim X$
 - undecidability for $\dim X = 2n - 2$
 - do not determine $Z_r(f)$

- **Cap image groups:** computable replacement of well groups
 - subgroups of well groups
 - based on primary obstruction to extending $f/|f|: A_r \to S^{n-1}$

 the primary obstruction is the “first component” of $[f/A_r]$

Our coding effort: compute the secondary (terciary) obstructions and see how much they matter.
Cap image groups can be used to study preimages of all points in \mathbb{R}^n simultaneously in some sense: provide an alternative to multidimensional persistence.
Still, the homotopy class \([f_{/A_r}]\) carries more information than needed to encode \(Z_r(f)\). If \(A_r\) is given, then different elements of \(\pi_r\) may determine the same family of zero sets.
Optimality of Π_f

Still, the homotopy class $[f/\Delta_r]$ carries more information than needed to encode $Z_r(f)$. If A_r is given, then different elements of π_r may determine the same family of zero sets.

This additional information can be described if X is a smooth manifold.
Still, the homotopy class \([f/A_r]\) carries more information than needed to encode \(Z_r(f)\). If \(A_r\) is given, then different elements of \(\pi_r\) may determine the same family of zero sets.

This additional information can be described if \(X\) is a smooth manifold.

Definition

Let \(X\) be a smooth manifold. A function \(g\) is a regular \(r\)-perturbation of \(f\) if \(\|f - g\| < r\) and \(g\) is transverse to \(0 \in \mathbb{R}^n\).
Still, the homotopy class \([f/A_r]\) carries more information than needed to encode \(Z_r(f)\). If \(A_r\) is given, then different elements of \(\pi_r\) may determine the same family of zero sets.

This additional information can be described if \(X\) is a smooth manifold.

Definition

Let \(X\) be a smooth manifold. A function \(g\) is a regular \(r\)-perturbation of \(f\) if \(\|f - g\| < r\) and \(g\) is transverse to \(0 \in \mathbb{R}^n\).

Let

\[
Z^f_{fr}(f) := \{(g^{-1}(0), dg|_{g^{-1}(0)}): \text{ } g \text{ a regular } r\text{-perturbation of } f\}
\]
Optimality of Π_f

\[Z_{r}^{fr}(f) := \{ (g^{-1}(0), dg|_{g^{-1}(0)}) : g \text{ a regular } r\text{-perturbation of } f \} \]
Optimality of Π_f

$$Z^\text{fr}_r(f) := \{(g^{-1}(0), dg|_{g^{-1}(0)}) : g \text{ a regular } r\text{-perturbation of } f\}$$

Elements of Z^fr_r are framed dim $X - n$ dimensional submanifolds of X, contained in the complement of A_r (trivialization of the normal bundle).
Optimality of Π_f

Theorem

Assume that X is a smooth compact m-manifolds, $r > 0$, $A_r = h^{-1}[0, \infty)$ for some regular h, and $m \leq 2n - 3$.

Then there is a bijection

$$\{ Z^\text{fr}_r(f) \mid f : X \to \mathbb{R}^n \text{ such that } A_r = |f|^{-1}[r, \infty) \} \longleftrightarrow \pi_r$$

satisfying that each $Z^\text{fr}_r(f)$ is mapped to $[f/A]$.

• So, $[f/A]$ is an invariant of $Z^\text{fr}_r(f)$

• The additional information in $[f/A] \in \pi_r$ encodes the infinitesimal behaviour of perturbation(s) around their zero sets.
Optimality of Π_f

Theorem

Assume that X is a smooth compact m-manifolds, $r > 0$, $A_r = h^{-1}[0, \infty)$ for some regular h, and $m \leq 2n - 3$. Then there is a bijection

$$\{Z^{{fr}}_r(f) \mid f : X \to \mathbb{R}^n \text{ such that } A_r = |f|^{-1}[r, \infty)\} \longleftrightarrow \pi_r$$

satisfying that each $Z^{{fr}}_r(f)$ is mapped to $[f/A]$.

Moreover, each element of $Z^{{fr}}_r(f)$ determines $[f/A]$.

• So, $[f/A]_r$ is an invariant of $Z^{{fr}}_r(f)$

• The additional information in $[f/A]_r \in \pi_r$ encodes the infinitesimal behaviour of perturbation(s) around their zero sets.
Optimality of Π_f

Theorem
Assume that X is a smooth compact m-manifolds, $r > 0$, $A_r = h^{-1}[0, \infty)$ for some regular h, and $m \leq 2n - 3$.
Then there is a bijection

$$\{Z_r^{fr}(f) \mid f : X \to \mathbb{R}^n \text{ such that } A_r = |f|^{-1}[r, \infty)\} \leftrightarrow \pi_r$$

satisfying that each $Z_r^{fr}(f)$ is mapped to $[f/A]$.

Moreover, each element of $Z_r^{fr}(f)$ determines $[f/A]$.

- So, $[f/A_r]$ is an invariant of $Z_r^{fr}(f)$
Optimality of Π_f

Theorem
Assume that X is a smooth compact m-manifolds, $r > 0$, $A_r = h^{-1}[0, \infty)$ for some regular h, and $m \leq 2n - 3$.

Then there is a bijection

$$\{Z_{fr}^r(f) \mid f : X \to \mathbb{R}^n \text{ such that } A_r = |f|^{-1}[r, \infty)\} \leftrightarrow \pi_r$$

satisfying that each $Z_{fr}^r(f)$ is mapped to $[f/A]$.

Moreover, each element of $Z_{fr}^r(f)$ determines $[f/A]$.

- So, $[f/A_r]$ is an invariant of $Z_{fr}^r(f)$
- The additional information in $[f/A_r] \in \pi_r$ encodes the infinitesimal behaviour of perturbation(s) around their zero sets.
Key idea of the proof

\[Z_{fr}^r(f) \] is a framed cobordism class, then Pontrjagin construction gives the rest.
Key idea of the proof

\[Z_r^{fr}(f) \] is a framed cobordism class, then Pontrjagin construction gives the rest.

- Again, regular perturbations can be replaced by “regular homotopy perturbations.”
Key idea of the proof

\(Z^r_{fr}(f)\) is a framed cobordism class, then Pontrjagin construction gives the rest.

- Again, regular perturbations can be replaced by “regular homotopy perturbations.”
- From a regular homotopy we get a framed cobordism easily.
Key idea of the proof

$Z_{fr}^r(f)$ is a framed cobordism class, then Pontrjagin construction gives the rest.

- Again, regular perturbations can be replaced by “regular homotopy perturbations.”
- From a regular homotopy we get a framed cobordism easily.
- The other direction is more difficult.
Follow the approach of cap image groups. We can construct $\Pi_f(c)$ for any $c \in \mathbb{R}^n$, not just $c = 0$. Can we compute some data structure built from $\Pi_f(c)$, $c \in \mathbb{R}^n$, that robustly describes f itself (not just the zero set)?

New approach to multidimensional persistence?

Understanding persistence modules of (pointed) Abelian groups.

Is the interleaving distance computable?

Practical implementation
Problems

- **Follow the approach of cap image groups.**
 We can construct \(\Pi_f(c) \) for any \(c \in \mathbb{R}^n \), not just \(c = 0 \). Can we compute some data structure built from \(\Pi_f(c), c \in \mathbb{R}^n \), that robustly describes \(f \) itself (not just the zero set)?
Problems

• **Follow the approach of cap image groups.** We can construct $\Pi_f(c)$ for any $c \in \mathbb{R}^n$, not just $c = 0$. Can we compute some data structure built from $\Pi_f(c)$, $c \in \mathbb{R}^n$, that robustly describes f itself (not just the zero set)?

 • New approach to multidimensional persistence?
Problems

• **Follow the approach of cap image groups.**
 We can construct $\Pi_f(c)$ for any $c \in \mathbb{R}^n$, not just $c = 0$. Can we compute some data structure built from $\Pi_f(c)$, $c \in \mathbb{R}^n$, that robustly describes f itself (not just the zero set)?
 • New approach to multidimensional persistence?

• Understanding persistence modules of (pointed) Abelian groups.
Problems

• **Follow the approach of cap image groups.**
 We can construct $\Pi_f(c)$ for any $c \in \mathbb{R}^n$, not just $c = 0$. Can we compute some data structure built from $\Pi_f(c)$, $c \in \mathbb{R}^n$, that robustly describes f itself (not just the zero set)?
 - New approach to multidimensional persistence?

• **Understanding persistence modules of (pointed) Abelian groups.**
 - Is the interleaving distance computable
Problems

- **Follow the approach of cap image groups.**
 We can construct $\Pi_f(c)$ for any $c \in \mathbb{R}^n$, not just $c = 0$. Can we compute some data structure built from $\Pi_f(c)$, $c \in \mathbb{R}^n$, that robustly describes f itself (not just the zero set)?
 - New approach to multidimensional persistence?
- Understanding persistence modules of (pointed) Abelian groups.
 - Is the interleaving distance computable
- Practical implementation