41. Hausel, T., Mellit, A., Pei, D. Mirror symmetry with branes by equivariant Verlinde formulae

40. Hausel, T., Mereb M., Wong M. Arithmetic and representation theory of wild character varieties, (to appear in Journal of the European Mathematical Society) arXiv:1604.03382

39. Hausel, T., Rodriguez-Villegas, F.: Cohomology of large semiprojective hyperkaehler varieties,  Astérisque No. 370 (2015), 113–156.arXiv:1309.4914

38. Hausel, T. Letellier, E.Rodriguez-Villegas, F.Positivity for Kac polynomials and DT-invariants of quiversAnnals of Mathematics, 177 (2013) 1147-1168, Issue 3,   arXiv:1204.2375

37. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties II, Advances in Mathematics, Volume 234, 2013, 85-128, arXiv:1109.5202

36. Hausel, T.: Global topology of the Hitchin system, in Handbook of Moduli II, editors: Gavril Farkas and Ian Morrison, International Press, 2013, arXiv:1102.1717

35. Hausel, T, Pauly, C : Prym varieties of spectral covers,   Geometry and Topology 16 (2012) 1609–1638,  arXiv:1012.4748

34. de Cataldo, M, Hausel, T.,Migliorini, L.: Exchange between perverse and weight filtration for the Hilbert schemes of points of two surfacesJournal of Singularities , volume 7 (2013), 23-38,   arXiv:math/1012.2583

33. de Cataldo, M, Hausel, T.,Migliorini, LTopology of Hitchin systems and Hodge theory of character varieties: the case A_1Annals of Mathematics, Volume 175 (2012), Issue 3 , 1329--1407arXiv:1004.1420

32. Hausel, T. Letellier, E., Rodriguez-Villegas, F.: Topology of character varieties and representations of quivers, Comptes Rendus Mathematique, Volume 348, Issues 3-4, February 2010, Pages 131-135 doi:10.1016/j.crma.2010.01.025; arXiv:0905.3491

31. Hausel, T.: Kac conjecture from Nakajima quiver varieties, Inventiones Mathematicae, Volume 181, Number 1, 2010, 21-37, arXiv:0811.1569

30. Hausel, T. Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties, Duke Mathematical Journal, Volume 160, Number 2 (2011), 323-400, arXiv:0810.2076

29. Hausel, T.: S-duality in hyperkähler Hodge theory in The many facets of geometry - A tribute to Nigel Hitchin , OUP 2010, arXiv:0709.0504

28.Hausel, T., Rodriguez-Villegas, F.: Mixed Hodge polynomials of character varieties, Inventiones Mathematicae, 174, no. 3, (2008), 555--624,arXiv:math.AG/0612668

27. Hausel, T.: Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform, Proceedings of the National Academy of Sciences of the United States of America 103, no. 16, 6120--6124, arxiv:math.AG/0511163

26. Hausel, T.: Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve, in Geometric Methods in Algebra and Number Theory Series: Progress in Mathematics, Vol. 235 Bogomolov, Fedor; Tschinkel, Yuri (Eds.) 2005, arXiv: math.AG/0406380

25. Hausel, T., Proudfoot, N.: Abelianization for hyperkähler quotients, Topology, 44 (2005) 231-248, arXiv: math.SG/0310141

24. Hausel, T.: Quaternionic Geometry of Matroids, Central European Journal of Mathematics, 3 (1), (2005), 26--38 arXiv: math.AG/0308146

23. Hausel, T.,Swartz, E.: Intersection forms of toric hyperkähler varieties, Proceedings of the American Mathematical Society, 134, (2006), 2403-2409, arXiv: math.AG/0306369

22. Etesi, G., Hausel, T.: On Yang-Mills-instantons on multi-centered metrics, arXiv: hep-th/0207196 , Communications in Mathematical Physics, 235 No. 2 , (2003) 275-288

21. Hausel, T., Hunsicker, E., Mazzeo, R.: Hodge cohomology of gravitational instantons, Duke Mathematical Journal, 122 Issue 3, (2004) 485-548, arXiv: math.DG/0207169

20. Etesi, G., Hausel, T.: Geometric construction of new Yang-Mills instantons over Taub-NUT space, Physics Letters B , 514 (1-2) (2001), 189-199 arXiv: hep-th/0105118

19. Hausel, T., Sturmfels, B.: Toric hyperkaehler varieties, Documenta Mathematica, 7 (2002), 495-534, arXiv: math.AG/0203096

18. Hausel, T., Thaddeus, M.: Examples of mirror partners arising from integrable systems, Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique, 333 (4) (2001) 313-318, arXiv: math.AG/0106140

17. Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality and Hitchin systems, Inventiones Mathematicae, 153, No. 1, 2003, 197-229 arXiv: math.AG/0205236

16. Etesi, G., Hausel, T.: Geometric interpretation of Schwarzschild instantons, Journal of Geometry and Physics , 37 (2001) 126-136 arXiv: hep-th/0003239

15. Hausel, T., Thaddeus, M.: Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles , Proceedings of the London Mathematical Society 88 (2004) 632-658 ,arXiv: math.AG/0003093

14. Hausel, T., Thaddeus, M. : Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles, Journal of the American Mathematical Society, 16 (2003), 303-329, arXiv: math.AG/0003094.

13. Hausel, T.: Geometric quantization and Jones-Witten theory (in Hungarian) in Algebraic topology and geometry in Physics, (lecture notes of Summer school for Hungarian Physics students, Óbánya, 1997), MAFIHE, Budapest, 1999

12. Hausel, T.: Geometry of the moduli space of Higgs bundles, thesis for Ph.D. in Pure Mathematics, DPMMS, Cambridge University, August 1998, arXiv:math.AG/0107040

11. Hausel, T.: Vanishing of intersection numbers on the moduli space of Higgs bundles , Adv. Theor. and Math. Phys. , 2 (1998) 1011-1040, arXiv:math.AG/9805071

10. Hausel, T.: Compactification of moduli of Higgs bundles , Journal für die reine und angewandte Mathematik , Volume 503 (1998) 169-192, arXiv:math.AG/9804083,

9. Hausel, T., Makai, E. jr.,Szûcs, A.: Inscribing cubes and covering by rhombic dodecahedrons via equivariant topology, Mathematika 47 (2000), 371-397 , arXiv: math.MG/9906066

8. Hausel, T., Makai, E. jr.,Szûcs A.: Polyhedra inscribed and circumscribed to convex bodies, General Mathematics , 1997, Proc. of 3rd Internat. Workshop on Diff. Geom. and its Appls. and the 1st German-Romanian Seminar on Geometry, 1997, Sibiu, Romania

7. Hausel, T., Moment map, toric varieties and mixed volumes, dissertation for diploma in Department of Mathematics, Eötvös Loránd University , December 1995

6. Hausel, T.: On a Gallai-type problem for lattices. Acta Mathematica Hungarica (66) (1995), no.1-2, 127-145

5. Bezdek K.,Hausel, T.: On the number of lattice hyperplanes which are needed to cover the lattice points of a convex body. Intuitive Geometry (Szeged,1991), 27-31, Colloq. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994

4. Bezdek K.,Hausel, T.: Coating by cubes. Beiträge zur Algebra und Geometrie 35 (1994), no.1, 119-123

3. Hausel, T.: Transillumination of lattice packing of balls. Studia Sci. Math. Hungar 27 (1992), no.1-2, 241-242

2. Hausel, T.: On a two dimensional problem in lattice geometry, (in Hungarian) KÖMAL (Journal of Mathematics and Physics for Secondary Schools) (1989), no. 3, 103-107

1. Hausel, T.: Pedal triangle and convergent sequences , (in Hungarian) KÖMAL (Journal of Mathematics and Physics for Secondary Schools) (1988) no. 10, 433-437