Alistarh Group

Distributed Algorithms and Systems

Distribution has been one of the key trends in computing over the last decade: processor architectures are multi-core, while large-scale systems for machine learning and data processing can be distributed across several machines or even data centers. The Alistarh group works to enable these applications by creating algorithms that scale—that is, they improve their performance when more computational units are available.

This fundamental shift to distributed computing performed puts forward exciting open questions: How do we design algorithms to extract every last bit of performance from the current generation of architectures? How do we design future architectures to support more scalable algorithms? Are there clean abstractions to render high-performance distribution accessible to programmers? The group’s research is focused on answering these questions. In particular, they are interested in designing efficient, practical algorithms for fundamental problems in distributed computing, in understanding the inherent limitations of distributed systems, and in developing new ways to overcome these limitations. One particular area of focus over the past few years has been distributed machine learning.

Group Leader

On this site:


Current Projects

Distributed machine learning | Concurrent data structures and applications | Molecular computation


Rybicki J, Abrego N, Ovaskainen O. 2020. Habitat fragmentation and species diversity in competitive communities. Ecology Letters. 23(3), 506–517. View

Arbel-Raviv M, Brown TA, Morrison A. 2020. Getting to the root of concurrent binary search tree performance. Proceedings of the 2018 USENIX Annual Technical Conference, USENIX ATC 2018. USENIX: Annual Technical Conference 295–306. View

Aganezov S, Zban I, Aksenov V, Alexeev N, Schatz MC. 2019. Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. 20, 641. View

Bhatia S, Chatterjee B, Nathani D, Kaul M. 2019. A persistent homology perspective to the link prediction problem. Complex Networks and their applications VIII. , SCI, vol. 881. 27–39. View

Renggli C, Ashkboos S, Aghagolzadeh M, Alistarh D-A, Hoefler T. 2019. SparCML: High-performance sparse communication for machine learning. International Conference for High Performance Computing, Networking, Storage and Analysis, SC. SC: Conference for High Performance Computing, Networking, Storage and Analysis View

View All Publications


since 2017 Assistant Professor, IST Austria
2016 – 2017 “Ambizione Fellow”, Computer Science Department, ETH Zurich
2014 – 2016 Researcher, Microsoft Research, Cambridge, UK
2014 – 2016 Morgan Fellow, Downing College, University of Cambridge, UK
2012 – 2013 Postdoc, Massachusetts Institute of Technology, Cambridge, USA
2012 PhD, EPFL, Lausanne, Switzerland

Selected Distinctions

2018 ERC Starting Grant
2015 Awarded Swiss National Foundation “Ambizione” Fellowship
2014 Elected Morgan Fellow at Downing College, University of Cambridge
2012 Postdoctoral Fellowship of the Swiss National Foundation
2011 Best Paper Award at the International Conference on Distributed Computing and Networking

Additional Information

Dan Alistarh’s website

Back to Top