Skip to main content

Feng Group

Reproductive Genetics and Epigenetics

Epigenetics is the study of heritable changes in phenotypes, without changes in the underlying genetic code. Understanding germlines, the cells that contain the genetic information that is passed down from one generation to the next, is essential for understanding epigenetics because these cells mediate inheritance and undergo large-scale epigenetic changes.


Compared to animals, plant germlines differentiate much later and undergo distinct epigenetic changes despite highly conserved epigenetic pathways. These differences make plant germlines invaluable for revealing the core principles of epigenetics and sexual reproduction. Plant germlines are also of enormous practical significance because they produce the seeds that comprise most of our staple food.


The Feng group’s research aims to answer three interconnected questions regarding plant germline epigenetics:


How do chromatin landscapes change during germline development and what are the underlying mechanisms?


What are the biological functions of these epigenetic reprogramming events?


How are environment-induced epigenetic memories transmitted and/or erased?


Through addressing these questions, Feng and her team hope to provide deep insights into epigenetic mechanisms and germline functions, and reveal core principles governing epigenetic regulation of sexual reproduction in eukaryotes.



Team


Current Projects

DNA methylation reprogramming in land plants | Chromatin configuration in plant germlines | Epigenetic inheritance and resetting across generations | Mechanisms underlying thermal sensitivity of male reproduction


Recent Publications

Lyons DB, Briffa A, He S, Choi J, Hollwey E, Colicchio J, Anderson I, Feng X, Howard M, Zilberman D. 2023. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Reports. 42(3), 112132. View

Walker J, Gao H, Zhang J, Aldridge B, Vickers M, Higgins JD, Feng X. 2017. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nature Genetics. 50(1), 130–137. View

Ibarra CA, Feng X, Schoft VK, Hsieh T-F, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 337(6100), 1360–1364. View

View All Publications

ReX-Link: Xiaoqi Feng


Career

since 2023 Assistant Professor (fast track to professor), ISTA
2020 – 2022 Group Leader, Scale 3, John Innes Centre, Norwich, UK
2019 – 2020 Group Leader, Scale 4, tenured, John Innes Centre, Norwich, UK
2014 – 2019 Group Leader, Scale 4, tenure-track, John Innes Centre, Norwich, UK
2011 – 2014 Postdoctoral Fellow, University of California, Berkeley, USA
2010 PhD, University of Oxford, UK



theme sidebar-arrow-up
Back to Top