LIFE SCIENCES

Siekhaus Group

Invasive Migration

The ability of cells to migrate is crucial for their function in the immune system, the formation of the body, and the spread of cancer. The Siekhaus group investigates how cells move within the complex environment of an organism, using the genetic power of the fruit fly to interrogate this process and identify ways in which it is regulated.

Vertebrate immune and cancer cells need to squeeze between closely connected cells to disseminate in the body. Daria Siekhaus and her group study how cells penetrate such tissue barriers, using the developmental movement of macrophages in the fruit fly Drosophila melanogaster as a model. The Siekhaus group uses a combination of imaging, genetics, cell biology, and biophysics to identify the strategies that underlie tissue invasion. The group has recently found that a cytokine conserved in vertebrates facilitates macrophage invasion by reducing tension in surrounding tissues, acting through a previously unidentified pathway. The group is also focusing on studying the functions of novel genes required in Drosophila macrophages for tissue penetration that are conserved in vertebrates, and studies their roles in immune function and cancer metastasis.

Group Leader


On this site:


Team

Avatar

Maria Akhmanova

Postdoc

Avatar

Julia Biebl

Laboratory Technician

+43 2243 9000 0

Avatar

Shamsi Emtenani

PhD Student

+43 2243 9000 4767


Avatar

Attila György

Laboratory Technician

+43 2243 9000 7421

Avatar

Michaela Misova

PhD Student

Avatar

Justine Renno

Project Technician

+43 2243 9000 4755


Avatar

Marko Roblek

Postdoc

Avatar

Katarina Valosková

PhD Student

Avatar

Stephanie Wachner

PhD Student


Current Projects

The role of tissue tension in regulating invasive migration | A novel transporter and its effect on glycosylation, immune function and metastasis | The role of transcriptional control to tune a subpopulation of macrophages to facilitate invasion


Publications

Valosková K, Biebl J, Roblek M, Emtenani S, György A, Misova M, Ratheesh A, Rodrigues P, Shkarina K, Larsen ISB, Vakhrushev SY, Clausen H, Siekhaus DE. 2019. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife. 8, e41801. View

Ratheesh A, Biebl J, Smutny M, Veselá J, Papusheva E, Krens G, Kaufmann W, György A, Casano AM, Siekhaus DE. 2018. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 45(3), 331–346. View

György A, Roblek M, Ratheesh A, Valosková K, Belyaeva V, Wachner S, Matsubayashi Y, Sanchez Sanchez B, Stramer B, Siekhaus DE. 2018. Tools allowing independent visualization and genetic manipulation of Drosophila melanogaster macrophages and surrounding tissues. G3: Genes, Genomes, Genetics. 8(3), 845–857. View

Matsubayashi Y, Louani A, Dragu A, Sanchez Sanchez B, Serna Morales E, Yolland L, György A, Vizcay G, Fleck R, Heddleston J, Chew T, Siekhaus DE, Stramer B. 2017. A moving source of matrix components is essential for De Novo basement membrane formation. Current Biology. 27(22), 3526–3534e.4. View

Ratheesh A, Belyaeva V, Siekhaus DE. 2015. Drosophila immune cell migration and adhesion during embryonic development and larval immune responses. Current Opinion in Cell Biology. 36(10), 71–79. View

View All Publications

Career

since 2012 Assistant Professor, IST Austria
2003 – 2011 Research Scientist, Skirball Institute, New York University Medical Center, USA
1999 – 2003 Postdoctoral Fellow, University of California, Berkeley, USA
1998 PhD, Stanford University, USA


Selected Distinctions

2016 FWF Grant
2012 Marie Curie Career Integration Grant
2003 – 2005 NIH Fellowship


Additional Information

Download CV



Back to Top