Loose Group

Self-Organization of Protein Systems

How are nanometer-sized proteins able to perform complex functions on a cellular scale? The Loose group studies the molecular mechanisms of intracellular self-organization by rebuilding cellular functions in a bottom-up approach.


Although we often know which proteins are required for specific processes in the cell, how they act together to accomplish this task is not yet understood. Instead of looking at complex phenomena in an intact cell, the Loose group aims to rebuild cellular functions from purified components. This bottom-up approach allows for a better control of the experimental conditions and a quantitative characterization of the underlying molecular processes. Ultimately, this helps to identify the mechanistic principles that allow to give rise to living systems. The interdisciplinary approach of the Loose group combines biochemical reconstitution experiments with advanced fluorescence microscopy, biomimetic membrane systems, and computer-aided image analysis. They currently focus on two research questions: (1) What is the mechanism of bacterial cell division?, and (2) What are the emergent properties of small GTPase networks involved in membrane identity formation and vesicle transport?


On this site:


Team

Avatar

Albert Auer

PhD Student

Avatar

Gabriel Brognara

PhD Student

Avatar

Hanifatul Budiman

PhD Student


Avatar

Anita Carija

Research Technician

Avatar

Caterina Giannini

PhD Student

Avatar

Nataliia Gnyliukh

PhD Student


Avatar

Marko Kojic

PhD Student

Avatar

Lukasz Kowalski

Postdoc

Avatar

Philipp Radler

PhD Student


Avatar

Xing Ye

Postdoc


Current Projects

Self-organization of the bacterial cell division machinery | Emergent properties of small GTPase networks


Publications

Radler P, Baranova NS, Dos Santos Caldas PR, Sommer CM, Lopez Pelegrin MD, Michalik D, Loose M. 2022. In vitro reconstitution of Escherichia coli divisome activation. Nature Communications. 13, 2635. View

Johnson AJ, Dahhan DA, Gnyliukh N, Kaufmann W, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera Servin JL, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. 2021. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 118(51), e2113046118. View

Labajová N, Baranova NS, Jurásek M, Vácha R, Loose M, Barák I. 2021. Cardiolipin-containing lipid membranes attract the bacterial cell division protein diviva. International Journal of Molecular Sciences. 22(15), 8350. View

Ishihara K, Decker F, Dos Santos Caldas PR, Pelletier JF, Loose M, Brugués J, Mitchison TJ. 2021. Spatial variation of microtubule depolymerization in large asters. Molecular Biology of the Cell. 32(9), 869–879. View

Hernández-Rocamora VM, Baranova NS, Peters K, Breukink E, Loose M, Vollmer W. 2021. Real time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin binding proteins. eLife. 10, 1–32. View

View All Publications

ReX-Link: Martin Loose


Career

since 2021 Professor, Institute of Science and Technology Austria (ISTA)
2015 – 2021 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2011 – 2014 Departmental Fellow, Harvard Medical School, Boston, USA
2010 – 2011 Postdoc, TU Dresden and Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
2010 PhD, TU Dresden and Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany


Selected Distinctions

2016 HFSP Young Investigator Grant
2015 ERC Starting Grant
2012 – 2014 HSFP Long-term fellowship
2011 – 2012 EMBO Long-term fellowship
2010 Dr. Walter Seipp Award for best dissertation at TU Dresden
2001 – 2009 Student and PhD Fellowship of the German National Scholarship Foundation


Additional Information

Open Loose group website



Back to Top