Seiringer Group

Mathematical Physics

The Seiringer group develops new mathematical tools for the rigorous analysis of many-particle systems in quantum mechanics, with a special focus on exotic phenomena in quantum gases, like Bose-Einstein condensation and superfluidity.

A basic problem in statistical mechanics is to understand how the same equations on a microscopic level lead to a variety of very different manifestations on a macroscopic level. Due to the intrinsic mathematical complexity of this problem, one typically has to resort to perturbation theory or other uncontrolled approximations, whose justification remains open. It therefore remains a challenge to derive non-perturbative results and to obtain precise conditions under which the various approximations can or cannot be justified. For this purpose it is necessary to develop new mathematical techniques and methods. These new methods lead to different points of view and thus increase their understanding of physical systems. Concrete problems under current investigation include the spinwave approximation in magnetism, the validity of the Bogoliubov approximation for the excitation spectrum of dilute Bose gases, and pattern formation in Ising models with competing interactions.


On this site:


Team


Current Projects

Stability of many-body systems with point interactions | The Heisenberg ferromagnet at low temperature and the spin-wave approximation | Excitation spectrum and superfluidity for weakly interacting Bose gases


Publications

Mysliwy K, Seiringer R. 2020. Microscopic derivation of the Fröhlich Hamiltonian for the Bose polaron in the mean-field limit. Annales Henri Poincare. View

Seiringer R, Yngvason J. 2020. Emergence of Haldane pseudo-potentials in systems with short-range interactions. Journal of Statistical Physics. 181, 448–464. View

Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. 2020. Quantum impurity model for anyons. Physical Review B. 102(14). View

Frank R, Seiringer R. 2020. Quantum corrections to the Pekar asymptotics of a strongly coupled polaron. Communications on Pure and Applied Mathematics. View

Lieb EH, Seiringer R. 2020. Divergence of the effective mass of a polaron in the strong coupling limit. Journal of Statistical Physics. 180, 23–33. View

View All Publications

Career

since 2013 Professor, IST Austria
2010 – 2013 Associate Professor, McGill University, Montreal, Canada
2003 – 2010 Assistant Professor, Princeton University, USA
2001 – 2003 Postdoc, Princeton University, USA
2000 – 2001 Assistant, University of Vienna, Austria
2000 PhD, University of Vienna, Austria


Selected Distinctions

2017 Corresponding Member, Austrian Academy of Sciences (ÖAW)
2016 ERC Advanced Grant
2012 – 2017 William Dawson Scholarship
2012 – 2014 NSERC E.W.R. Steacie Memorial Fellowship
2009 – 2010 U.S. National Science Foundation CAREER Grant
2009 Henri Poincaré Prize of the International Association of Mathematical Physics
2004 – 2006 Alfred P. Sloan Fellow
2001 – 2003 Erwin Schrödinger Fellow


Additional Information

Download CV
Open Seiringer group website



Back to Top