Skip to main content

Hof Group

Nonlinear Dynamics and Turbulence

Most fluid flows of practical interest are turbulent, yet our understanding of this phenomenon is very limited. The Hof group seeks to gain insight into the nature of turbulence and the dynamics of complex fluids.

Flows in oceans, around vehicles, and through pipelines are all highly turbulent. Turbulence governs friction losses and transport and mixing properties. Despite its ubiquity, insights into the nature of turbulence are very limited. To obtain a fundamental understanding of the origin and the principles underlying this phenomenon, the Hof group investigates turbulence when it first arises from smooth, laminar flow. The group combines detailed laboratory experiments with highly resolved computer simulations, and applies methods from nonlinear dynamics and statistical physics, enabling them to decipher key aspects of the transition from smooth to turbulent flow, and identify universal features shared with disordered systems in other areas of physics. Some of these insights can be used to control turbulent flow, and the group actively develops such methods. In addition, the group investigates instabilities in fluids with more complex properties, such as dense suspensions of particles, polymer solutions and blood flow.




Team

Image of Roger Ayats

Roger Ayats

Postdoc

Image of Stefano Brizzolara

Stefano Brizzolara

Postdoc

Image of Mike Hennessey-Wesen

Mike Hennessey-Wesen

Postdoc


Image of Shoaib Kamil

Shoaib Kamil

PhD Student

Image of Ziyin Lu

Ziyin Lu

PhD Student

Image of Sarath Suresh

Sarath Suresh

PhD Student


Image of Mukund Vasudevan

Mukund Vasudevan

Research Technician

+43 2243 9000 7624

Image of Gökhan Yalniz

Gökhan Yalniz

PhD Student


Image of Bowen Yang

Bowen Yang

PhD Student

Image of Yi Zhuang

Yi Zhuang

Postdoc

+43 2243 9000 7632


Current Projects

Revisiting the turbulence problem using statistical mechanics | Transition from laminar to turbulent flow | Dynamics of complex fluids | Control of fully turbulent flows | Cytoplasmic streaming | Instabilities in cardiovascular flows


Publications

Hennessey-Wesen M. 2023. Adaptive mutation in E. coli modulated by luxS. Institute of Science and Technology Austria. View

Marensi E, Yalniz G, Hof B. 2023. Dynamics and proliferation of turbulent stripes in plane-Poiseuille and plane-Couette flows. Journal of Fluid Mechanics. 974, A21. View

Riedl M, Mayer ID, Merrin J, Sixt MK, Hof B. 2023. Synchronization in collectively moving inanimate and living active matter. Nature Communications. 14, 5633. View

Scarselli D, Lopez Alonso JM, Varshney A, Hof B. 2023. Turbulence suppression by cardiac-cycle-inspired driving of pipe flow. Nature. 621(7977), 71–74. View

Paranjape CS, Yalniz G, Duguet Y, Budanur NB, Hof B. 2023. Direct path from turbulence to time-periodic solutions. Physical Review Letters. 131(3), 034002. View

View All Publications

ReX-Link: Björn Hof


Career

Since 2013 Professor, Institute of Science and Technology Austria (ISTA)
2007 – 2013 Research Group Leader, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
2005 – 2007 Lecturer, University of Manchester, UK
2003 – 2005 Research Associate, Delft University of Technology, The Netherlands
2001 PhD, University of Manchester, UK


Selected Distinctions

2019 Simons Foundation Grant
2017 Fellow, American Physical Society (APS)
2012 ERC Consolidator Grant
2011 Dr. Meyer Struckmann Science Prize
2005 RCUK Fellowship


Additional Information

ERC Starting/Consolidator Grant website
Physics & Beyond at ISTA



theme sidebar-arrow-up
Back to Top