Fink Group

Quantum Integrated Devices

The Fink group’s research is positioned between quantum optics and mesoscopic condensed matter physics. The team studies quantum physics in electrical, mechanical, and optical chip-based devices with the goal to advance and integrate quantum technology for simulation, communication, metrology, and sensing.

One of Fink’s goals is to develop a microchip-based router that will be able to convert a microwave signal to an optical signal with near unity efficiency. With such devices, the Fink group seeks to perform quantum communication with superconducting circuits and telecom wavelength photons. In one project, the group uses a qubit to create a single photon state. With the router, this microwave photon is converted into an optical photon, which can then be transmitted over long distances using low-loss optical fiber. The Fink group will also use this technique to entangle microwave and optical photons – an important step toward realizing worldwide quantum networks. Another direction is to develop higher quality qubits by using new electrical circuit elements called geometric superinductors which help suppress charge fluctuations that can wash out the quantum information stored on-chip.


View Fink group website


Group Leader


On this site:


Team

Avatar

Georg Arnold

PhD Student

+43 2243 9000 2031

Avatar

Yuan Chen

Postdoc

Avatar

Farid Hassani

PhD Student

+43 2243 9000 2125


Avatar

William Hease

Postdoc

+43 2243 9000 2031

Avatar

Matilda Peruzzo

PhD Student

+43 2243 9000 2024

Avatar

Elena Redchenko

PhD Student

+43 2243 9000 2031


Avatar

Rishabh Sahu

PhD Student

+43 2243 9000 2125

Avatar

Riya Sett

PhD Student

Avatar

Andrea Trioni

PhD Student


Avatar

Matthias Wulf

Postdoc

+43 2243 9000 2024

Avatar

Martin Zemlicka

Postdoc

+43 2243 9000 2024


Current Projects

Quantum electro- and optomechanics | Quantum microwave photonics | Ultra-high impedance physics for hardware protected qubits | Multi-qubit quantum electrodynamics | Resonant nonlinear optics 


Publications

Rueda Sanchez AR, Hease WJ, Barzanjeh S, Fink JM. 2019. Electro-optic entanglement source for microwave to telecom quantum state transfer. npj Quantum Information. 5, 108. View

Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kuamri M, Schwefel HGL. 2019. Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. CLEO: Conference on Lasers and Electro-Optics Europe View

Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kumari M, Schwefel HGL. 2019. Resonant electro-optic frequency comb generation in lithium niobate disk resonator inside a microwave cavity. Nonlinear Optics, OSA Technical Digest. NLO: Nonlinear Optics View

Barzanjeh S, Redchenko E, Peruzzo M, Wulf M, Lewis D, Arnold GM, Fink JM. 2019. Stationary entangled radiation from micromechanical motion. Nature. 570, 480–483. View

Vukics A, Dombi A, Fink JM, Domokos P. 2019. Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum. 3, 150. View

View All Publications

Career

since 2016 Assistant Professor, IST Austria
2015 – 2016 Senior Staff Scientist, California Institute of Technology, Pasadena, USA
2012 – 2015 IQIM Postdoctoral Research Scholar, California Institute of Technology, Pasadena, USA
2011 – 2012 Postdoctoral Research Fellow, ETH Zurich, Switzerland
2010 PhD, ETH Zurich, Switzerland


Selected Distinctions

2018 Fritz Kohlrausch Award
2017 ERC Starting Grant
2012 IQIM Postdoctoral Prize Fellowship
2010 ETH Medal for Outstanding Dissertation
2009 CSF Award at the QSIT Conference on Quantum Engineering


Additional Information

Download CV

View group website



Back to Top