Hippenmeyer Group

Genetic Dissection of Cerebral Cortex Development

The human cerebral cortex, the seat of our cognitive abilities, is composed of an enormous number and diversity of neurons and glia cells. How the cortex arises from neural stem cells is an unsolved but fundamental question in neuroscience. In the pursuit of mechanistic insights, the Hippenmeyer group genetically dissects corticogenesis at unprecedented single cell resolution using the unique MADM (Mosaic Analysis with Double Markers) technology.

The Hippenmeyer group’s current objectives are 1) to establish a definitive quantitative and mechanistic model of cortical neural stem cell lineage progression; 2) to dissect the cellular and molecular mechanisms generating cell-type diversity; 3) to determine the role of genomic imprinting, an epigenetic phenomenon, in cortex development. In a broader context, the group’s research has the ultimate goal to advance the general understanding of brain function and why human brain development is so sensitive to disruption of particular signaling pathways in pathological neurodevelopmental diseases and psychiatric disorders

Group Leader


On this site:


Team

Avatar

Nicole Amberg

Postdoc

Avatar

Robert Beattie

Postdoc

+43 2243 9000 0

Avatar

Giselle Cheung

Postdoc


Avatar

Ximena Contreras Paniagua

PhD Student

+43 2243 9000 4737

Avatar

Amarbayasgalan Davaatseren

Laboratory Technician

Avatar

Andi Hansen

PhD Student


Avatar

Susanne Laukoter

Postdoc

+43 2243 9000 1093

Avatar

Florian Pauler

Senior Laboratory Technician

Avatar

Melissa Stouffer

Postdoc


Avatar

Carmen Streicher

Laboratory Technician

+43 2243 9000 7434


Current Projects

Determine neuronal lineages by clonal analysis | Mechanisms generating cell-type diversity | Probing genomic imprinting in cortex development


Publications

Laukoter S, Beattie RJ, Pauler F, Amberg N, Nakayama KI, Hippenmeyer S. 2020. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nature Communications. 11. View

Cheung GT, Cousin MA. 2019. Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction. Journal of Neurochemistry. 151(5), 570–583. View

Llorca A, Ciceri G, Beattie RJ, Wong FK, Diana G, Serafeimidou-Pouliou E, Fernández-Otero M, Streicher C, Arnold SJ, Meyer M, Hippenmeyer S, Maravall M, Marín O. 2019. A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. eLife. 8. View

Contreras X, Hippenmeyer S. 2019. Memo1 tiles the radial glial cell grid. Neuron. 103(5), 750–752. View

Picco N, Hippenmeyer S, Rodarte J, Streicher C, Molnár Z, Maini PK, Woolley TE. 2019. A mathematical insight into cell labelling experiments for clonal analysis. Journal of Anatomy. 235(3), 686–696. View

View All Publications

Career

since 2012 Assistant Professor, IST Austria
2011 – 2012 Research Associate, Stanford University, Palo Alto, USA
2006 – 2011 Postdoctoral Fellow, Stanford University, Palo Alto, USA
2004 – 2006 Postdoctoral Associate, University of Basel and Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
2004 PhD, University of Basel, Switzerland


Selected Distinctions

2016 ERC Consolidator Grant
2014 HFSP Program Grant
2013 Marie Curie Career Integration Grant
2009 – 2011 Fellowship for Advanced Researchers, Swiss National Science Foundation, Bern, Switzerland
2007 – 2009 HFSP Long-term Fellowship
2006 EMBO Long-term Fellowship
2005 Natural Sciences Faculty Prize for the best PhD thesis of the year
2004, University of Basel, Switzerland
2005 Edmond H. Fischer Prize


Additional Information

Download CV
Open Hippenmeyer group website



Back to Top