LIFE SCIENCES / PHYSICAL SCIENCES

Hannezo Group

Physical Principles in Biological Systems

During embryo development, cells must “know” how to behave at the right place and at the right time. The Hannezo group applies methods from theoretical physics to understand how these robust choices occur.

The Hannezo group is particularly interested in design principles and processes of self-organization in biology, at various scales, in close collaboration with cell and developmental biologists. Their methods include tools from solid and fluid mechanics, statistical physics as well as soft matter approaches. Examples of problems that the group is working on – at three different scales – include: 1) how do cytoskeletal elements, which generate forces within cells, self-organize to produce complex spatio-temporal patterns? 2) how do cells concomitantly acquire identities and shape a tissue during development? and 3) how does complex tissue architecture derive from simple self-organizing principles, for instance during branching morphogenesis (in organs such as the kidneys, mammary glands, pancreas, and prostate) as a prototypical example.

Group Leader


On this site:


Team


Current Projects

Stochastic branching in mammalian organs | Active fluids and cell cytoskeleton | Models of fate choices of stem cells during homeostasis and embryo development


Publications

Recho P, Hallou A, Hannezo EB. 2019. Theory of mechanochemical patterning in biphasic biological tissues. Proceedings of the National Academy of Sciences of the United States of America. 116(12), 5344–5349. View

Petridou N, Grigolon S, Salbreux G, Hannezo E, Heisenberg C-PJ. 2019. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nature Cell Biology. 21, 169–178. View

Hannezo EB, Simons BD. 2018. Statistical theory of branching morphogenesis. Development Growth and Differentiation. 60(9), 512–521. View

Sznurkowska M, Hannezo EB, Azzarelli R, Rulands S, Nestorowa S, Hindley C, Nichols J, Göttgens B, Huch M, Philpott A, Simons B. 2018. Defining lineage potential and fate behavior of precursors during pancreas development. Developmental Cell. 46(3), 360–375. View

Lilja A, Rodilla V, Huyghe M, Hannezo EB, Landragin C, Renaud O, Leroy O, Rulands S, Simons B, Fré S. 2018. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nature Cell Biology. 20(6), 677–687. View

View All Publications

Career

since 2017 Assistant Professor, IST Austria
2015 – 2017 Sir Henry Wellcome Postdoctoral Fellow, Gurdon Institute, Cambridge, UK
2015 – 2017 Junior Research Fellow, Trinity College, University of Cambridge, UK
2014 Postdoc, Institut Curie, Paris, France
2014 PhD, Institut Curie and Université Pierre et Marie Curie, Paris, France


Selected Distinctions

2015 Wellcome Trust Fellowship
2014 Young Researcher Prize of the Bettencourt-Schuller Foundation
2014 Trinity College Junior Research Fellowship
2010 PhD grant from the French Ministry of Research


Additional Information

Download CV
Open Hannezo group website




Back to Top