Heisenberg Group
Morphogenesis in Development
The most elaborate shapes of multicellular organisms – the elephant’s trunk, the orchid blossom, the lobster’s claw – all start off from a simple bunch of cells. This transformation of a seemingly unstructured cluster of cells into highly elaborate shapes is a common and fundamental principle in cell and developmental biology and the focus of the Heisenberg group’s work.
To gain insights into critical processes by which the developing organism takes shape, the Heisenberg group focuses on gastrulation in zebrafish and ascidians, a highly conserved process in which a seemingly unstructured blastula is transformed into an organized embryo. The group has chosen a transdisciplinary approach, employing a combination of genetic, cell biological, biochemical, and biophysical tools. Using these tools, the group is addressing how the interplay between the physical processes driving cell and tissue morphogenesis and the gene regulatory pathways determining cell fate specification control gastrulation. Insights derived from this work may ultimately have implications for the study of wound healing and cancer biology, as immune and cancer cells share many morphogenetic properties of embryonic cells.
Team
Current Projects
Cell adhesion | Actomyosin contraction | Cell and tissue morphogenesis | Cell polarization and migration
Publications
Hino N, Santos Fernandes Lasbarrères Camelo C, Heisenberg C-PJ. 2024. Development: Turing mechanics. Current Biology. 34(24), R1230–R1232. View
Hörmayer L, Montesinos López JC, Trozzi N, Spona L, Yoshida S, Marhavá P, Caballero Mancebo S, Benková E, Heisenberg C-PJ, Dagdas Y, Majda M, Friml J. 2024. Mechanical forces in plant tissue matrix orient cell divisions via microtubule stabilization. Developmental Cell. 59(10), 1333–1344.e4. View
Caballero Mancebo S, Shinde R, Bolger-Munro M, Peruzzo M, Szep G, Steccari I, Labrousse Arias D, Zheden V, Merrin J, Callan-Jones A, Voituriez R, Heisenberg C-PJ. 2024. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. 20, 310–321. View
Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. 2024. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 151(4), 1–18. View
Arslan FN, Hannezo EB, Merrin J, Loose M, Heisenberg C-PJ. 2024. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Current Biology. 34(1), 171–182.e8. View
ReX-Link: Carl-Philipp Heisenberg
Career
Since 2010 Professor, Institute of Science and Technology Austria (ISTA)
2001 – 2010 Group Leader, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
1997 – 2000 Postdoc, University College London, UK
1996 PhD, Max Planck Institute of Developmental Biology, Tübingen, Germany
Selected Distinctions
2019 Carus Medal, German Academy of Sciences Leopoldina
2017 ERC Advanced Grant
2017 Lower Austrian Science Award
2015 Member, EMBO
2015 Member, German Academy of Sciences Leopoldina
2000 Emmy Noether Junior Professorship