Serbyn Group

Condensed Matter Theory and Quantum Dynamics

How do isolated quantum systems behave when prepared in a highly non-equilibrium state? How can such quantum systems avoid the ubiquitous relaxation to a thermal equilibrium? How can we gain novel insights into properties of quantum matter using modern nonequilibrium probes? These and other open questions in the field of quantum non-equilibrium matter are the focus of the Serbyn group.

The majority of isolated quantum systems thermalize – i.e. they reach thermal equilibrium when starting from non-equilibrium states. The first research direction of the Serbyn group is to understand mechanisms of thermalization breakdown. Many-body localized systems present one generic example of thermalization breakdown due to the presence of strong disorder. The Serbyn group is studying properties of many-body localized phase and phase transition into thermalizing phase. Kinetically constrained models present another class of systems with some signatures of thermalization breakdown. The Serbyn group is actively working on non-equilibrium properties of quantum models with constrained dynamics. A second area of interest to the Serbyn group is related to non-equilibrium probes in condensed matter systems.

On this site:


Current Projects

Many-body localization | Quantum ergodicity breaking | Non-equilibrium probes of solids | Spin-orbit coupled materials


Medina Ramos RA, Vasseur R, Serbyn M. 2021. Entanglement transitions from restricted Boltzmann machines. Physical Review B. 104(10), 104205. View

De Nicola S. 2021. Importance sampling scheme for the stochastic simulation of quantum spin dynamics. SciPost Physics. 11(3), 048. View

Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets JR, Spanton EM, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young AF. 2021. Half and quarter metals in rhombohedral trilayer graphene. Nature. View

Maskara N, Michailidis A, Ho WW, Bluvstein D, Choi S, Lukin MD, Serbyn M. 2021. Discrete time-crystalline order enabled by quantum many-body scars: Entanglement steering via periodic driving. Physical Review Letters. 127(9), 090602. View

Sonner M, Serbyn M, Papić Z, Abanin DA. 2021. Thouless energy across the many-body localization transition in Floquet systems. Physical Review B. 104(8), L081112. View

View All Publications


since 2017 Assistant Professor, IST Austria
2014 – 2017 Gordon and Betty Moore Postdoctoral Fellow, University of California, Berkeley, USA
2014 PhD, Massachusetts Institute of Technology, Cambridge, USA

Selected Distinctions

2019 ERC Starting Grant
2019 Ludwig Boltzmann Prize
2013 Andrew Locket III Memorial Fund Award, Massachusetts Institute of Technology
2009 – 2010 Praecis Presidential Graduate Fellowship, Massachusetts Institute of Technology
2005 – 2006 Enrico Fermi Junior Grant

Additional Information

Download CV
Open Serbyn group website

Back to Top