Shigemoto Group

Molecular Neuroscience

Information transmission, the formation of memory, and plasticity are all controlled by various molecules at work in the brain. Focusing on the localization and distribution of molecules in brain cells, the Shigemoto group investigates their functional roles in higher brain functions.

The release of neurotransmitters from a nerve cell into the synapse, where they act on receptors on the connecting nerve cell, is the primary process of information transmission and computation in the brain. The Shigemoto group studies the localization of single neurotransmitter receptors, ion channels, and other functional molecules to understand the molecular basis of neuronal information processing. The group has pioneered several methods for studying the localization of functional molecules at an unprecedented sensitivity, detecting and visualizing even single membrane proteins in nerve cells using SDS-digested freeze-fracture replica labeling. They apply these methods to investigate the mechanisms of signaling and plasticity in the brain, with questions ranging from neurotransmission to learning.

Group Leader


On this site:


Team

Avatar

Catarina Alcarva

PhD Student

+43 2243 9000 2090

Avatar

Pradeep Bhandari

Postdoc

Avatar

Jessica Coelho Gaspar

Postdoc


Avatar

Kohgaku Eguchi

Postdoc

+43 2243 90007631 0

Avatar

Muhammad Jahirul ISLAM

Postdoc

Avatar

Marijo Jevtic

PhD Student


Avatar

David Kleindienst

PhD Student

+43 2243 9000 7630

Avatar

Peter Koppensteiner

Postdoc

Avatar

Elodie Le Monnier

Laboratory Technician


Avatar

Jacqueline-Claire Montanaro-Punzengruber

Senior Laboratory Technician

Avatar

Maria Silva Sifuentes

Laboratory Technician

Avatar

Cihan Önal

PhD Student


Current Projects

New chemical labeling methods for high resolution EM visualization of single molecules | Ultrastructural localization and function of receptors and ion channels in the brain | Mechanisms of long-term memory formation | Left-right asymmetry of hippocampal circuitry


Publications

Fredes Tolorza FA, Silva Sifuentes MA, Koppensteiner P, Kobayashi K, Jösch MA, Shigemoto R. Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. View

Kleindienst D, Montanaro-Punzengruber J-C, Bhandari P, Case MJ, Fukazawa Y, Shigemoto R. 2020. Deep learning-assisted high-throughput analysis of freeze-fracture replica images applied to glutamate receptors and calcium channels at hippocampal synapses. International Journal of Molecular Sciences. 21(18). View

Wang HY, Eguchi K, Yamashita T, Takahashi T. 2020. Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms. Journal of Neuroscience. 40(21), 4103–4115. View

Bao J, Graupner M, Astorga G, Collin T, Jalil A, Indriati DW, Bradley J, Shigemoto R, Llano I. 2020. Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo. eLife. 9. View

Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Moreno-Martínez AE, De La Ossa L, Martínez-Hernández J, Buisson A, Früh S, Bettler B, Shigemoto R, Fukazawa Y, Luján R. 2020. Reduction in the neuronal surface of post and presynaptic GABA>B< receptors in the hippocampus in a mouse model of Alzheimer’s disease. Brain Pathology. 30(3), 554–575. View

View All Publications

Career

since 2013 Professor, IST Austria
1998 – 2014 Professor, National Institute for Physiological Sciences, Okazaki, Japan
1990 – 1998 Assistant Professor, Kyoto University Faculty of Medicine, Kyoto, Japan
1994 PhD, Kyoto University, Japan
1985 MD, Kyoto University Faculty of Medicine, Japan


Selected Distinctions

ISI Highly Cited Researcher
2017 Member, Academia Europaea
2016 ERC Advanced Grant
2000 ISI Citation Laureate Award


Additional Information

Download CV

ERC Advanced Grant website



Back to Top