Skip to main content

Shigemoto Group

Molecular Neuroscience

Information transmission, the formation of memory, and plasticity are all controlled by various molecules at work in the brain. Focusing on the localization and distribution of molecules in brain cells, the Shigemoto group investigates their functional roles in higher brain functions.

The release of neurotransmitters from a nerve cell into the synapse, where they act on receptors on the connecting nerve cell, is the primary process of information transmission and computation in the brain. The Shigemoto group studies the localization of single neurotransmitter receptors, ion channels, and other functional molecules to understand the molecular basis of neuronal information processing. The group has pioneered several methods for studying the localization of functional molecules at an unprecedented sensitivity, detecting and visualizing even single membrane proteins in nerve cells using SDS-digested freeze-fracture replica labeling. They apply these methods to investigate the mechanisms of signaling and plasticity in the brain, with questions ranging from neurotransmission to learning.

On this site:


Current Projects

New chemical labeling methods for high resolution EM visualization of single molecules | Ultrastructural localization and function of receptors and ion channels in the brain | Mechanisms of long-term memory formation | Left-right asymmetry of hippocampal circuitry


Michalska JM, Lyudchik J, Velicky P, Korinkova H, Watson J, Cenameri A, Sommer CM, Amberg N, Venturino A, Roessler K, Czech T, Höftberger R, Siegert S, Novarino G, Jonas PM, Danzl JG. 2023. Imaging brain tissue architecture across millimeter to nanometer scales. Nature Biotechnology. View

Vierra NC, Ribeiro-Silva L, Kirmiz M, Van Der List D, Bhandari P, Mack OA, Carroll J, Le Monnier E, Aicher SA, Shigemoto R, Trimmer JS. 2023. Neuronal ER-plasma membrane junctions couple excitation to Ca2+-activated PKA signaling. Nature Communications. 14, 5231. View

Eguchi K, Le Monnier E, Shigemoto R. 2023. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of neuroscience. 43(23), 4197–4216. View

Alcarva C. 2023. Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning. Institute of Science and Technology Austria. View

Martín-Belmonte A, Aguado C, Alfaro-Ruiz R, Moreno-Martínez AE, de la Ossa L, Aso E, Gómez-Acero L, Shigemoto R, Fukazawa Y, Ciruela F, Luján R. 2022. Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice. Alzheimer’s Research & Therapy. 14, 136. View

View All Publications

ReX-Link: Ryuichi Shigemoto


since 2013 Professor, Institute of Science and Technology Austria (ISTA)
1998 – 2014 Professor, National Institute for Physiological Sciences, Okazaki, Japan
1990 – 1998 Assistant Professor, Kyoto University Faculty of Medicine, Kyoto, Japan
1994 PhD, Kyoto University, Japan
1985 MD, Kyoto University Faculty of Medicine, Japan

Selected Distinctions

ISI Highly Cited Researcher
2017 Member, Academia Europaea
2016 ERC Advanced Grant
2000 ISI Citation Laureate Award

Additional Information

Download CV

ERC Advanced Grant website

theme sidebar-arrow-up
Back to Top