Higginbotham Group

Condensed Matter and Quantum Circuits

Quantum systems are fragile, constantly altered and disrupted by their environments. The Higginbotham group investigates electronic devices that are exceptions to this rule, aiming to understand the basic principles of their operations and develop future information-processing technology.

The Higginbotham group experimentally explores the boundaries between condensed-matter systems and quantum information processing. In practice, the group builds small electronic devices that combine superconductors, semiconductors, and mechanical oscillators. The central idea of their approach is that building rudimentary information-processing devices both teaches us about the physics of these interesting systems and advances technology such as quantum computing. Currently, the group is interested in using electromechanical and microwave measurement techniques to study quantities that are “invisible” to conventional electrical circuits.

On this site:


Current Projects

Circuit electrodynamics of p-wave superconductors | Electromechanics across a quantum phase transition


Anselmetti GLR, Martinez EA, Ménard GC, Puglia D, Malinowski FK, Lee JS, Choi S, Pendharkar M, Palmstrøm CJ, Marcus CM, Casparis L, Higginbotham AP. 2019. End-to-end correlated subgap states in hybrid nanowires. Physical Review B. 100(20), 205412. View

View All Publications


since 2019 Assistant Professor, IST Austria
2017-2019 Researcher, Microsoft Station Q Copenhagen
2015-2017 Postdoctoral research, JILA: NIST and CU Boulder
2010-2015 Ph.D., Harvard University
2009-2010 M.Phil., Cambridge University
2005-2009 B.Sc., Harvey Mudd College

Selected Distinctions

2016 National Research Council Postdoctoral Fellowship
2010 D.O.E. Office of Science Graduate Fellowship
2009 A.P.S. Apker Award Finalist
2009 Churchill Foundation Scholarship, Cambridge, UK

Addtional Information

Download CV
View Higginbotham Lab website

Back to Top