Skip to main content

Lampert Group

Maschinelles Lernen und Computer Vision

Heutige Computerprogramme sind “inselbegabt”: Software, die eine bestimmte Aufgabe wie Schachspielen sehr gut erfüllt, ist für die meisten anderen Aufgaben, wie das Durchsuchen einer Datenbank, völlig nutzlos – und umgekehrt. Die Lampert Gruppe arbeitet an Methoden, mit denen Computer aus dieser Einschränkung ausbrechen können, indem sie Informationen zwischen verschiedenen Aufgaben teilen.

Moderne Computersoftware passt sich ihren NutzerInnen an, z.B. lernt die Spracherkennungssoftware den Sprecher mit der Zeit besser zu verstehen, und E-Mail Programme lernen, welche der eingehenden E-Mails Spam sind und daher unterdrückt werden sollten. Dieser Lernprozess findet jedoch für jede Aufgabe, die der Computer lösen sollte, unabhängig statt. Die Lampert-Gruppe entwickelt und analysiert Algorithmen, die es Computern ermöglichen, neue Aufgaben zu erlernen und dabei das aus früheren Aufgaben gewonnene Wissen zu nutzen. Ein besonders Anwendungsgebiet ist das automatische Bildverständnis. Das Ziel der Software dabei ist, den Inhalt eines natürlichen Bildes zu analysieren und automatisch Fragen dazu zu beantworten, wie etwa: Welche Objekte sind im Bild sichtbar? Wo befinden sie sich? Wie interagieren sie?




Team


Laufende Projekte

Vertrauenswürdiges Machine Learning | Transfer und lebenslanges Lernen | Deep Learning-Theorie


Publikationen

Prach B, Brau F, Buttazzo G, Lampert C. 2024. 1-Lipschitz layers compared: Memory, speed, and certifiable robustness. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR: Conference on Computer Vision and Pattern Recognition, 24574–24583. View

Zakerinia H, Talaei S, Nadiradze G, Alistarh D-A. 2024. Communication-efficient federated learning with data and client heterogeneity. Proceedings of the 27th International Conference on Artificial Intelligence and Statistics. AISTATS: Conference on Artificial Intelligence and Statistics, PMLR, vol. 238, 3448–3456. View

Scott JA, Zakerinia H, Lampert C. 2024. PEFLL: Personalized federated learning by learning to learn. 12th International Conference on Learning Representations. ICLR: International Conference on Learning Representations. View

Súkeník P, Mondelli M, Lampert C. 2023. Deep neural collapse is provably optimal for the deep unconstrained features model. 37th Annual Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems, NeurIPS, . View

Henderson PM, Ghazaryan A, Zibrov AA, Young AF, Serbyn M. 2023. Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Physical Review B. 108(12), 125411. View

Zu Allen Publikationen

ReX-Link: Christoph Lampert


Karriere

Seit 2015 Professor, Institute of Science and Technology Austria (ISTA)
2010 – 2015 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2007 – 2010 Senior Research Scientist, Max Planck Institute for Biological Cybernetics, Tübingen, Deutschland
2004 – 2007 Senior Researcher, German Research Center for Artificial Intelligence, Kaiserslautern, Deutschland
2003 PhD, University of Bonn, Deutschland


Ausgewählte Auszeichnungen

Seit 2015 Associate Editor in Chief of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)
2012 ERC Starting Grant (consolidator phase)
2008 Best Paper Award, IEEE Conference for Computer Vision and Pattern Recognition (CVPR)
2008 Best Student Paper Award, European Conference for Computer Vision (ECCV)
2008 Main Prize, German Society for Pattern Recognition (DAGM)


Zusätzliche Informationen

Lampert Group Website



theme sidebar-arrow-up
Nach Oben