Mondelli Group
Data Science, Machine Learning und Informationstheorie
Wir befinden uns inmitten einer Revolution der Informationstechnologie, in der Daten die wichtigste Ware darstellen. Die Auswertung einer explodierenden Zahl von Datensätzen macht die Behandlung von komplexen Inferenzproblemen notwendig. Die Mondelli Gruppe arbeitet an der Entwicklung mathematischer Lösungen. Diese Inferenzprobleme erstrecken sich über verschiedene Gebiete und entstehen in vielen Applikationen aus den Ingenieurs- und Naturwissenschaften. Die Mondelli Gruppe konzentriert sich insbesondere auf kabellose Kommunikation und maschinelles Lernen. Das Ziel kabelloser Kommunikation in einem Übertragungskanal ist, codierte Information als Botschaft zu senden und Maße wie Komplexität, Zuverlässigkeit, Latenz, Durchsatz und Bandbreite zu optimieren. Das Ziel des maschinellen Lernens ist zu verstehen, wie viele Samples genügende Information übermitteln, um eine gewisse Aufgabe zu erfüllen, und die besten Methoden herauszufinden, diese Samples einzusetzen. Die Informationstheorie inspiriert sowohl die Sichtweise als auch die Werkzeuge der Mondelli Gruppe, was zur der Untersuchung der folgenden grundlegenden Fragen führt: Wie wenig Information braucht es, um ein Inferenzproblem zu lösen? Ist der Entwurf eines Algorithmus mit geringer Komplexität möglich? Was sind die Vor- und Nachteile der beteiligten Paramater (z.B. Dimension des Problems, Größe des Datensamples, Komplexität)?
On this site:
Team
Laufende Projekte
Grenzen des und effiziente Algorithmen für Deep Learning | Nicht-konvexe Optimierung in hohen Dimensionen | Optimales Code-Design für kurze Blocklängen
Publikationen
Mondelli M, Venkataramanan R. 2022. Approximate message passing with spectral initialization for generalized linear models. Journal of Statistical Mechanics: Theory and Experiment. 2022(11), 114003. View
Doan N, Hashemi SA, Mondelli M, Gross WJ. 2022. Decoding Reed-Muller codes with successive codeword permutations. IEEE Transactions on Communications. 70(11), 7134–7145. View
Fathollahi D, Mondelli M. 2022. Polar coded computing: The role of the scaling exponent. 2022 IEEE International Symposium on Information Theory. ISIT: Internation Symposium on Information Theory vol. 2022, 2154–2159. View
Hashemi SA, Mondelli M, Fazeli A, Vardy A, Cioffi J, Goldsmith A. 2022. Parallelism versus latency in simplified successive-cancellation decoding of polar codes. IEEE Transactions on Wireless Communications. 21(6), 3909–3920. View
Shevchenko A, Kungurtsev V, Mondelli M. 2022. Mean-field analysis of piecewise linear solutions for wide ReLU networks. Journal of Machine Learning Research. 23(130), 1–55. View
ReX-Link: Marco Mondelli
Karriere
seit 2019 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2017 – 2019 Postdoc, Stanford University, Stanford, USA
2018 Research Fellow, Simons Institute for the Theory of Computing, Berkeley, USA
2016 PhD, EPFL, Lausanne, Switzerland
Ausgewählte Auszeichnungen
2019 Lopez-Loreta Prize
2018 Simons-Berkeley Research Fellowship
2018 EPFL Doctorate Award
2017 Early Postdoc Mobility Fellowship, Swiss National Science Foundation
2016 Best Paper Award, ACM Symposium on Theory of Computing (STOC)
2015 Best Student Paper Award, IEEE International Symposium on Information Theory (ISIT)
2015 Dan David Prize Scholarship