PHYSIK UND CHEMIE

Alpichshev Group

Nicht-lineare und zeitauflösende Spektroskopie stark korrelierter Elektronensysteme

Um ein komplexes System zu verstehen ist es oft nützlich, es aus seinem Gleichgewicht zu bringen: Die Dynamik bei der Wiederherstellung des Gleichgewichts verrät viel darüber, wie das System funktioniert. Die Alpichshev-Gruppe verwendet ultraschnelle optische Methoden, um die physikalischen Mechanismen zu verstehen, die vielen komplizierten Phänomenen der Vielteilchenphysik zugrunde liegen.

Eines der wichtigsten Probleme der modernen Physik ist es, das Verhalten von vielen stark mit einander interagierenden Teilchen zu verstehen. Solche Systeme besitzen oft einzigartige Eigenschaften, wie Hochtemperatur-Supraleitung oder kolossalen Magnetowiderstand. Woher dieses Verhalten genau stammt, ist noch unklar. Das hindert uns daran, die Auswirkungen dieser Phänomene zu kontrollieren oder zu verstärken. ForscherInnen auf diesem Gebiet stehen vor der Schwierigkeit, dass diese “stark korrelierenden” Eigenschaften ausnahmslos dann auftreten, wenn viele Phasen miteinander konkurrieren. Daher ist es schwierig zu bestimmen, welche Rolle jeder einzelne Faktor dabei spielt. Die Alpichshev-Gruppe umgeht dieses Problem, indem sie ultrakurze Laserpulse verwendet, um die einzelnen Freiheitsgrade in einem stark korrelierten Material gezielt ausgewählt zu stören und zu untersuchen. Sie erforschen so das System im vorübergehend entstandenen Zustand. Diese Information kann dann in einem weiteren Schritt für die Rekonstruktion der mikroskopischen Mechanismen hinter komplexen Phänomenen verwendet werden.

Group Leader


On this site:


Team


Laufende Projekte

Bestimmung der Rolle von anstreifenden Schwingungsmoden organischer Kationen beim Transport von Photoladungsträgern in hybriden Bleihalogenid-Perowskiten | Exziton Dynamik in frustrierten Mott Isolatoren | Ultraschnelle dissipative Vorgänge in korrelierten Elektronensystemen unterhalb der Planck-Skala


Publikationen

Mahmood F, Alpichshev Z, Lee Y, Kong J, Gedik N. 2018. Observation of exciton-exciton interaction mediated valley Depolarization in Monolayer MoSe2. Nano Letters. 18(1), 223–228. View

Alpichshev Z, Sie E, Mahmood F, Cao G, Gedik N. 2017. Origin of the exciton mass in the frustrated Mott insulator Na2IrO3. Physical Review B. 96(23). View

Vishik I, Mahmood F, Alpichshev Z, Gedik N, Higgins J, Greene R. 2017. Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ. Physical Review B. 95(11). View

Xu Y, Chiu J, Miao L, He H, Alpichshev Z, Kapitulnik A, Biswas R, Wray L. 2017. Disorder enabled band structure engineering of a topological insulator surface. Nature Communications. 8. View

Hinton J, Thewalt E, Alpichshev Z, Mahmood F, Koralek J, Chan M, Veit M, Dorow C, Barišić N, Kemper A, Bonn D, Hardy W, Liang R, Gedik N, Greven M, Lanzara A, Orenstein J. 2016. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors. Scientific Reports. 6. View

Zu Allen Publikationen

Karriere

seit 2018, Assistant Professor, IST Austria
2017 – 2018 Visiting Scientist, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
2012 – 2017 Postdoctoral Associate, Massachusetts Institute of Technology, Cambridge, MA, USA
2012 PhD, Stanford University, Stanford, CA, USA


Ausgewählte Auszeichnungen

2008 – 2010 Albion W. Hewlett Stanford Graduate Fellowship
2005 “Dynasty Foundation” Fellowship
2002 Landau Fellowship, Landau


Zusätzliche Information

Download CV



Nach Oben