13. Juli 2018
Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation
Wissenschafter entwickeln neue maschinelle Lernmethode, die Roboter sicherer machen kann | Methode ermöglicht einfachere und intuitivere Modelle von physikalischen Situationen
Um den sicheren Betrieb eines Roboters zu gewährleisten, ist es entscheidend, zu wissen, wie der Roboter unter verschiedenen Bedingungen reagiert. Aber woher soll man wissen, was einen Roboter stört, ohne ihn tatsächlich zu beschädigen? Eine neue Methode, die Wissenschaftler des Institute of Science and Technology Austria (IST Austria) und des Max-Planck-Instituts für Intelligente Systeme entwickelten, ist die erste Methode für maschinelles Lernen, welche Beobachtungen, die unter sicheren Bedingungen getroffen wurden, nutzt, um genaue Vorhersagen für alle möglichen Bedingungen zu treffen, die von der gleichen physikalischen Dynamik bestimmt werden. Die Methode ist speziell für reale Situationen entwickelt und bietet einfache, interpretierbare Beschreibungen der zugrundeliegenden Physik. Die Forscher stellen morgen ihre Ergebnisse auf der diesjährigen renommierten International Conference for Machine Learning (ICML) vor.
In der Vergangenheit konnte maschinelles Lernen Daten nur interpolieren – also Vorhersagen treffen über eine Situation, die „zwischen“ anderen, bekannten Situationen liegt. Maschinelles Lernen konnte nicht extrapolieren – das heißt es konnte keine Vorhersagen treffen über Situationen die außerhalb der bekannten Situationen liegen, da es nur lernt, bekannte Daten lokal so genau wie möglich zu modellieren. Das Sammeln von genügend Daten für effektive Interpolation ist außerdem zeit- und ressourcenintensiv, und erfordert Daten aus extremen oder gefährlichen Situationen. Georg Martius, ehemaliger Postdoc des IST Austria und ISTFELLOW und seit 2017 Gruppenleiter am MPI für Intelligente Systeme in Tübingen, Subham S. Sahoo, ein PhD Student am MPI für Intelligente Systeme, und Christoph Lampert, Professor am IST Austria, entwickelten nun eine neue maschinelle Lernmethode, die diese Probleme anspricht. Es ist die erste maschinelle Lernmethode, die präzise für unbekannte Situationen extrapoliert.
Das Besondere der neuen Methode ist, dass sie versucht, die wahre Dynamik der Situation herauszufinden: Gegeben der Daten liefert sie Gleichungen, die die zugrundeliegende Physik beschreiben. „Wenn man diese Gleichungen kennt“, sagt Georg Martius, „dann kann man sagen, was in allen Situationen passieren wird, auch, wenn man sie nicht gesehen hat.“ Das ist, was es der Methode ermöglicht, zuverlässig zu extrapolieren, und sie so einzigartig unter maschinellen Lernmethoden macht.
Die Methode des Teams ist in mehrfacher Hinsicht einzigartig. Erstens waren die Lösungen, die maschinelles Lernen zuvor erstellte, viel zu komplex, als dass ein Mensch sie verstehen könnte. Die Gleichungen, die aus der neuen Methode resultieren, sind viel einfacher: „Die Gleichungen unserer Methode sind etwas, was man in einem Lehrbuch sehen würde – einfach und intuitiv“, sagt Christoph Lampert. Letzteres ist ein weiterer Vorteil: Andere maschinelle Lernmethoden geben keinen Einblick in den Zusammenhang zwischen Eingaben und Ergebnissen – und damit auch keine Einsicht darüber, ob das Modell überhaupt plausibel ist. „In allen anderen Forschungsbereichen erwarten wir Modelle, die physikalisch Sinn machen, und die uns sagen, warum“, ergänzt Lampert. „Das sollten wir auch vom maschinellen Lernen erwarten und das ist, was unsere Methode bietet.“ Deshalb basierte das Team seine Lernmethode auf einer einfacheren Architektur als übliche Methoden, um die Interpretierbarkeit zu gewährleisten und sie für physikalische Situationen zu optimieren. In der Praxis bedeutet das, dass weniger Daten benötigt werden, um die gleichen oder sogar bessere Ergebnisse zu erzielen.
Und es ist nicht alles Theorie: „In meiner Gruppe arbeiten wir an der Entwicklung eines Roboters, der diese Art des Lernens nutzt. In Zukunft würde der Roboter mit verschiedenen Bewegungen experimentieren und dann in der Lage sein, die Gleichungen herauszufinden, die seinen Körper und seine Bewegung beschreiben, so dass er gefährliche Aktionen oder Situationen vermeiden kann“, fügt Martius hinzu. Während hauptsächlich an der Roboteranwendung geforscht wird, kann die Methode mit jeder Art von Daten, von biologischen Systemen bis hin zu Röntgenübergangsenergien, eingesetzt werden und auch in größere maschinelle Lernnetzwerke integriert werden.
Weitere Informationen:
Conference on Machine Learning
Publikation:
S. S. Sahoo, C. H. Lampert & G. Martius. 2018. „Learning equations for extrapolation and control“. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden. PMLR, 2018.
Die Forschung wurde aus dem ISTFELLOW-Programm, einem Marie Skłodowska-Curie COFUND Förderung, das von IST Austria und der Europäischen Union im Rahmen des Forschungs- und Innovationsprogramms „Horizont 2020“ kofinanziert wird, gefördert. Dieses Programm wurde inzwischen durch ein weiteres COFUND Förderung, das ISTplus-Programm, abgelöst, das für Bewerbungen von qualifizierten Postdocs aus aller Welt offen ist.