Skip to main content

Fischer Group

Theorie der partiellen Differentialgleichungen, Angewandte und Numerische Analysis

Verschiedene Phänomene, wie die Bewegung von Flüssigkeiten oder von elastischen Objekten, die Entwicklung von Grenzflächen, oder die Physik von quantenmechanischen Teilchen werden durch partielle Differentialgleichungen beschrieben. Die Fischer Gruppe arbeitet an der mathematischen Analyse von partiellen Differentialgleichungen, die in der Wissenschaft entstehen, und verknüpft diese auch zu Gebieten wie der numerischen Analysis oder der Stochastik.

Partielle Differentialgleichungen sind ein grundlegendes Instrument, um viele Phänomene in den Naturwissenschaften zu beschreiben – von der Physik von Kontinuen wie Flüssigkeiten oder elastischen Feststoffen, über die Quantenmechanik bis hin zur Populationsbiologie. Julian Fischer und seine Gruppe arbeiten an den mathematischen Aspekten partieller Differentialgleichungen. Eines der Hauptthemen der Arbeit ist die mathematische Berechtigung von Modellvereinfachungen: So kann beispielsweise ein elastisches Material mit sehr heterogener, kleinräumiger Struktur in vielen Fällen als homogenes Material angenähert werden. Ebenso kann eine Flüssigkeit mit geringer Verdichtbarkeit in vielen Fällen als nicht komprimierbar betrachtet werden. Um solche Annäherungen zu rechtfertigen, leitet die Gruppe rigorose Schätzungen des Annäherungsfehlers ab. Die von ihnen eingesetzten Techniken verbinden die Analyse von partiellen Differentialgleichungen mit angrenzenden mathematischen Bereichen, wie der numerischen Analysis und der Stochastik.




Team


Laufende Projekte

Effektives Verhalten von zufälligen Materialien | Entwicklung von Grenzflächen in Strömungsmechanik und Festkörpern | Fluktuierende Hydrodynamik und stochastische partielle Differentialgleichungen | Entropie-dissipative partielle Differentialgleichungen


Publikationen

Davoli E, D’Elia L, Ingmanns J. 2024. Stochastic homogenization of micromagnetic energies and emergence of magnetic skyrmions. Journal of Nonlinear Science. 34(2), 30. View

Clozeau N, Mattesini F. 2024. Annealed quantitative estimates for the quadratic 2D-discrete random matching problem. Probability Theory and Related Fields. View

Agresti A, Hussein A. 2023. Maximal Lp-regularity and H∞-calculus for block operator matrices and applications. Journal of Functional Analysis. 285(11), 110146. View

Agresti A. 2023. Delayed blow-up and enhanced diffusion by transport noise for systems of reaction-diffusion equations. Stochastics and Partial Differential Equations: Analysis and Computations. View

Marveggio A. 2023. Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences. Institute of Science and Technology Austria. View

Zu Allen Publikationen

ReX-Link: Julian Fischer


Karriere

Seit 2022 Professor, Institute of Science and Technology Austria (ISTA)
2017 – 2022 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2014 – 2016 Postdoc, Max Planck Institute for Mathematics in the Sciences, Leipzig, Deutschland
2013 – 2014 Postdoc, University of Zurich, Schweiz
2013 PhD, University of Erlangen-Nürnberg, Deutschland


Ausgewählte Auszeichnungen

2020 ERC Starting Grant
2020 ÖMG-Förderungspreis, Early-/Mid-Career-Award of the Austrian Mathematical Society
2015 Dr. Körper Prize, PhD Award of the GAMM


Zusätzliche Informationen

Julian Fischer’s website
Mathphys Analysis Seminar website
Mathematics at ISTA



theme sidebar-arrow-up
Nach Oben